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Inferring interaction potentials from stochastic particle trajectories
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Accurate interaction potentials between microscopic components such as colloidal particles or cells are crucial
to understanding a range of processes, including colloidal crystallization, bacterial colony formation, and cancer
metastasis. Even in systems where the precise interaction mechanisms are unknown, effective interactions can
be measured to inform simulation and design. However, these measurements are difficult and time-intensive,
and often require conditions that are drastically different from in situ conditions of the system of interest.
Moreover, existing methods of measuring interparticle potentials rely on constraining a small number of particles
at equilibrium, placing limits on which interactions can be measured. We introduce a method for inferring
interaction potentials directly from trajectory data of interacting particles. We explicitly solve the equations of
motion to find a form of the potential that maximizes the probability of observing a known trajectory. Our method
is valid for systems both in and out of equilibrium, is well-suited to large numbers of particles interacting in
typical system conditions, and does not assume a functional form of the interaction potential. We apply our
method to infer the interactions of colloidal spheres from experimental data, successfully extracting the range
and strength of a depletion interaction from the motion of the particles.
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I. INTRODUCTION

Measuring interparticle interaction potentials reveals new
physics. Such measurements have led to the discovery
of long-range interactions in colloidal spheres with deple-
tant particles [1] and have been used to understand the
unexpected like-charge attraction of colloidal spheres, at-
tributed to many-body interactions in colloidal crystallites,
hydrodynamic interactions with a surface, or interfacial sol-
vation effects [2–4]. The direct measurement of off-target
binding has led to improved monoclonal antibody selection
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for therapeutic applications [5]. In addition to uncovering new
physical principles, accurately measuring interaction poten-
tials may provide insights into complex biological systems.
Intricate cell-cell communications mediate cell processes
ranging from cancer metastasis to tissue morphogenesis [6],
while interactions between agents govern emergent behavior
in active matter systems ranging from swarms of birds to
colonies of bacteria [7].

Interaction potentials also provide a coarse-grained lens
through which we can interpret and model complex system
dynamics. For example, while measurements of cell-cell in-
teractions at the molecular scale have produced profound
insights into cellular adhesion mechanisms and immune re-
sponse [8], similar understanding of larger scale biological
processes such as wound healing has been inaccessible.
While fully analytical models of such complex biological
systems are difficult to realize, it is possible to instead
integrate theoretical models with interactions directly in-
ferred from experimental data, providing a framework for
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experimentally reproducible simulation with significantly
reduced need for costly experiments. Further, accurate de-
scriptions of these mesoscale interactions would open the door
to the computational design of systems with bio-compatible
components or bio-inspired active materials [7].

In addition to improving modeling and computation, ac-
curate knowledge of particle potentials can also be helpful
for predicting dynamics. Integrating accurately measured in-
teraction potentials into particle tracking has been shown to
dramatically increase accuracy in colloidal systems, making
it possible to infer trajectories even for highly correlated
systems and expanding the range of experiments that can be
performed [9].

Current methods for experimental measurements of inter-
action potentials typically rely on observing small numbers
of highly constrained particles. These particles are confined
in optical traps to move in a single dimension, adhered to
the wall of a flow cell, or constrained to the tip of a force
sensor [10–14]. These methods for measuring interactions
require complex experimental setups with conditions that may
differ significantly from in situ environments of the systems
of interest. Even in methods where the particles are free
to move, the analysis of the resulting particle trajectories
typically assumes equilibrium motion. Nonequilibrium sys-
tems, including active matter and systems with many-body
or velocity-dependent interactions, are inaccessible to these
methods.

An alternative approach is the data-driven inference of
force fields using experimental trajectories. This method has
been applied to infer deterministic physical laws [15–17], but
there is a relative dearth of studies treating stochastic motion
[18]. Studies that have considered stochastic dynamics have
either been restricted to single- [19,20] or two-particle [6]
dynamics; require assuming a functional form for the force
[21,22]; or rely on a complicated decomposition of force field
onto a set of basis functions chosen a priori, whose func-
tional forms must be compatible with the inferred interparticle
forces [20,23].

One strategy for combating the bias inherent in prese-
lecting functional forms is to instead fit the potential to a
general functional form. Graph Neural Networks (GNNs) are
an especially appealing choice, as they implicitly include
physical priors of locality and distance dependence of in-
terparticle potentials. Fitting GNNs to simulations has been
highly successful and is well-established for deterministic
systems [15,16]. However, to our knowledge, no comprehen-
sive treatment of fitting stochastic dynamics to GNNs has yet
been attempted. Further, previous efforts to infer interaction
potentials from trajectory data have primarily considered sim-
ulated data, while studies that have attempted experimental
validation exclusively consider one- [19,20] or two-particle
[6] experiments.

Here, we present a maximum-likelihood-based approach
for inferring interparticle interaction potentials directly from
bulk particle trajectory data. These effective potentials are
defined to be the best fit to trajectory data under the as-
sumption that the system is well-described by a known
equation of motion. We focus on overdamped Langevin
(Brownian) dynamics but include in Appendix C a verification
that our approach also works in the underdamped regime. We
illustrate our approach by inferring an arbitrary functional

form with a GNN on both equilibrium and nonequilibrium
simulated data (see Appendix A for an example of inferring
the parameters for a potential of a known functional form).
We validate our method using experimental data of colloidal
particles experiencing depletion interactions. Using a GNN,
we reconstruct a pair interaction potential from experimental
particle trajectories and validate the inferred parameters with
prior characterizations of the system.

Our method is valid for any system for which the equa-
tions of motion are known. The method is equally applicable
to both equilibrium and nonequilibrium data and to bulk and
few-particle systems, significantly broadening the scope of
systems for which interactions can be inferred. Experimental
bulk trajectory data is abundant and relatively simple to obtain
[24–26]. We therefore expect our method to be of great utility
to the experimental community, offering a straightforward
means of characterizing interparticle interactions.

II. THEORY

Our general approach is based on a maximum-likelihood
formulation: under given dynamics, we identify the transi-
tion probability P(ri+1|ri ) for a set of particles moving from
positions ri at frame i to positions ri+1 at frame i + 1. This
probability is a function of the unknown pair potential U . We
then compute the probability of observing the entire particle
trajectory R(t) consisting of f frames by taking the product
of transition probabilities for each step, given by

P(R(t )) =
f −1∏
i=0

P(ri+1|ri ). (1)

To construct trajectories, we perform simulations of ensem-
bles of particles in bulk. Given a proposed pair potential U ,
we compute the negative log likelihood of observing those
trajectories and average across all sequential pairs of frames.
We then find the potential U that minimizes this average.

Consider Brownian dynamics, which obey the overdamped
Langevin equation

ṙ = − 1

γ
∇U (r) +

√
2kBT

γ
ξ (t ), (2)

where ṙ is the time derivative of position, γ is the friction
coefficient, U is the total interaction potential, kB is the Boltz-
mann constant, and T is temperature. We assume that the total
interaction potential U (r) can be written as a sum of pairwise
interactions. We denote the sum over all pair interactions in
frame i as U (ri ). ξ (t ) describes the stochastic thermal motion
in the system, and is given by delta-correlated Gaussian noise
with mean zero: 〈ξ (t )〉 = 0, 〈ξ (t )ξ (t ′)〉 = δ(t − t ′). These
equations of motion assume no velocity-dependent effects,
such as hydrodynamic interactions. While we expect we may
be able to neglect these effects for many real-life systems
where the entropic size of a particle may be significantly larger
than the hydrodynamic size [27], we also expect some amount
of hydrodynamic coupling to contribute to the effective par-
ticle interactions at experimental systems beyond the dilute
limit.

Given our knowledge of the noise statistics and dynamical
equation, we assign the transition probability to any particular
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change in particle position ri → ri+1 in a time interval
�t as

P(ri+1|ri ) =
(

γ

4πkBT �t

) dN
2

e
−γ (ri+1−(ri− �t

γ ∇U (ri )))2

4kBT �t . (3)

In the above equation, N is the total number of particles, and
d is the dimensionality of the position vector.

Substituting Eq. (3) into Eq. (1) yields the total probability
of observing a particular trajectory evaluated for all pairs of
sequential frames in the trajectory. Assuming that the temper-
ature (T ), time between frames (�t), and friction coefficient
γ are known, we can solve for the potential that maximizes
the log likelihood averaged over all particle trajectories in our
simulation.

The likelihood we use here considers only Brownian noise.
While this is valid for simulated data, true experimental data
will contain additional noise sources, such as uncertainty in
particle positions, that we neglect here. However, as we show
in Sec. IV, this approach generalizes to experimental data
despite this added uncertainty. We are primarily interested in
Brownian dynamics in the current work as our experiments
are in the overdamped regime; however, our approach works
in the more general underdamped case of Langevin dynam-
ics as well. In Appendix C, we show how an appropriately
modified inference method enables accurate reconstruction of
interaction potentials from simulated particle trajectories in
the underdamped regime.

III. GNN FITTING

To permit extraction of complex interaction potentials
whose form is a priori unknown, we apply our inference
method using a graphical neural network (GNN). Specifically,
we use NequIP, an E (3) equivariant neural network [16] that
was designed to find molecular dynamics potentials that ap-
proximate density functional theory (DFT) simulations. This
neural network can capture a wide range of functional forms,
including long-range interactions. While we only consider
identical particles with pair potentials, this approach can eas-
ily treat particles with additional features, such as orientations
or many-body interactions. Our method can readily accom-
modate different neural network architectures, making our
setup simple to integrate with rapidly evolving neural network
architectures.

Previous work employing GNNs used alignment with de-
terministic trajectories as a cost function [15], but this strategy
is inaccessible to stochastic motion. Instead, we leverage the
same maximum likelihood approach we introduce in Sec. II.
The GNN input is a set of particle positions in a single frame
and its output is the total potential energy of that frame. The
cost function used to train the network parameters is the neg-
ative log likelihood of obtaining the observed particle motion
between pairs of consecutive frames. This log probability
is computed from Eq. (3): in a given optimization step, we
evaluate the probability that the GNN estimate of the potential
energy could explain the motion observed in the pairs of
frames we consider. Because the GNN is implemented in JAX
[28], the potential energy function is differentiable, enabling
us to immediately evaluate the force, as needed in Eq. (3).
We average the log probability over a subset of such pairs,

FIG. 1. Inferring an arbitrary potential for simulated particles
undergoing Brownian motion. The true interaction potential is shown
with a black dashed line and the inferred interaction potential is
shown with a green solid line. The inset shows a sample form of the
potential before training with randomized weights. No assumptions
about the form of the potential were built into the model.

constituting a training batch (here, N = 20), to update the
GNN parameters.

To visualize the resulting pair interaction potential, we
evaluate the trained GNN on a system of two particles and ob-
tain potential energies at a series of interparticle distances. We
note that the network is trained on bulk systems of hundreds
of particles, meaning that we are testing in a very differ-
ent regime than we trained in. Nevertheless, applying this
framework to Brownian particle simulations, we are able to
accurately reconstruct a Morse interaction potential, as shown
in Fig. 1; see Appendix B for details.

IV. EXPERIMENTAL VALIDATION

Thus far, we have demonstrated our method on simulated
data. We now validate our approach on an experimen-
tal dataset. We suspend 1.3 µm charge-stabilized colloidal
spheres in a solution of carboxymethyl cellulose polymers
(radius of gyration approximately 60 nm [29,30]) in deionized
water. The colloidal particles repel one another electrostat-
ically in the absence of the polymer. Adding the polymer
induces an entropic attraction, called the depletion interaction,
that favors minimizing the volume excluded to the polymer
(Fig. 2). The overall interaction is the combination of electro-
static, van der Waals, and depletion interactions. The range
of the depletion interaction is on the order of the size of
the polymer, and the potential goes to infinity below contact
(1.3 µm center-to-center distance) because the particles cannot
overlap [31,32].

We allow the spheres to bind to the bottom surface of the
chamber, confining them to a a quasi-2D geometry, and record
bright-field microscope images as they diffuse and interact.
We record short, high-frame-rate videos separated by longer
time periods to ensure that the sampled trajectories are uncor-
related (Fig. 2, see Appendix E for additional experimental
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FIG. 2. Diagram of experimental system. Charge-stabilized
polystyrene spheres are suspended with depletant polymers with a
radius of gyration of approximately 0.06 µm. The depletants induce
an entropic attraction between the larger spheres, with a range set by
the size of the polymers. The spheres are depleted to a glass slide and
freely diffuse in the quasi-2D sample chamber.

detail). We then use trackpy [33] to localize the colloidal
particles to sub-pixel precision and link these positions across
frames to determine trajectories. We discard trajectories of
particles that leave the field of view, as well as the few parti-
cles that are outside the expected size of the colloidal particles,
which we consider to be contaminants.

We train our GNN using 8340 experimental snapshots col-
lected from 60 distinct trajectories and infer the interaction
potential shown in Fig. 3, assuming overdamped Langevin
(Brownian) dynamics to analyze the data. We use the max-
imum likelihood method as described in Sec. II to infer
the potential. While we account for Brownian noise in our
likelihood estimate, we neglect additional experimental noise
sources such as uncertainty in particle positions.

We find a minimum of the potential at 1.33 µm. The
Asakura-Oosawa model [31], which assumes that depletent
and colloidal particles are hard spheres, predicts a minimum
at the particle diameter (here, approximately 1.30 µm). This
shift in the minimum likely arises because the particles are
not hard spheres, and they electrostatically repel one another.
The range of the interaction can be read off the potential as
twice the width of the well from the minimum to the nearest
region at which the potential is zero: 0.16 µm, as shown in

Fig. 3(a). This value is larger than the value predicted by the
Asakura-Oosawa model, which predicts the range to be equal
to the hard-sphere diameter of the depletant particles (here, the
radius of gyration is approximately 0.06 µm). The increase in
the effective depletant size may also be explained by electro-
static effects, since the depletants are charged polymers.

To further validate the inferred potential, we compare it to
the potential of mean force (PMF), given by

U (x) = −kBT ln g(r), (4)

where g(r) is the pair correlation function for a set of particle
positions r. The results are shown as black dots in Fig. 3(a).
In the low density limit, the PMF becomes the pair potential
between the particles; at higher particle densities, it can serve
as a rough estimate of the pair potential, assuming that the sys-
tem is at equilibrium and only exhibits pairwise interactions.

We find reasonable agreement between the potential in-
ferred with the GNN and the experimental PMF [Fig. 3(b)].
Both methods return a measure of the colloidal radius and
depletion interaction range that agree with previous charac-
terizations. Additionally, the well depth and curvature of the
GNN potential both match the experimental PMF near the
potential minimum, indicating that this method could be infor-
mative for predicting relative populations of colloidal clusters
[34] or the elastic properties of colloidal crystals [35].

Because the PMF includes both energetic and entropic
effects in a nondilute system, we expect some disagreement
between the inferred potential and the experimental PMF.
However, we attribute the disagreement at low densities to
both polydispersity and experimental noise. The localiza-
tion algorithm occasionally identifies particles closer than
2 particle radii apart (1.3 µm), which is expected because
1.3 µm is the average diameter but the standard deviation is
approximately 2.5%. The small number of samples for center-
to-center distances smaller than around 1.2 µm is reflected in
the larger uncertainty in the inferred potential in this region.

As a final verification, we compare the pair correlation
function for the experimental data to one generated by running
simulations with a representative inferred interaction potential
[Fig. 3(b)]. We see that the two pair correlation functions
match well, with first and second peaks being at the same pair-
wise distances and having the same strengths. In the region
1.6 µm to 1.8 µm, the pair correlation from the simulations has
a trough that is absent in the experimental data. This observed
discrepancy in g(r) may arise from the fact that we fit to
dynamics assuming no hydrodynamic interactions. Our area
fraction in the experiment is 9.2 ± 0.3%, which corresponds
to a volume fraction of 6.1 ± 0.2%. At this level of crowding,
hydrodynamic interactions have a modest but not negligible
impact on particle dynamics when compared to the case where
hydrodynamics are neglected [36–38]. Thus, hydrodynamics
are present in the experiment but are not explicitly accounted
for in our model, and this will therefore affect the potential
inferred from the experimental data. Specifically, our model
does not account for the decreased mobility and increased
force required to move particles closer as interparticle distance
decreases, a consequence of hydrodynamic interactions [39].
This configuration-dependent effect mediated by fluid dynam-
ics in experimental systems is likely born out as an artificial
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FIG. 3. Inferring an arbitrary interaction potential for experimental colloidal data with known interactions. (a) Inferred interaction potential
is shown with a solid green line. The error bars show varying potentials found by running the training procedure with different random keys.
Experimental data are shown with black scatter points. The vertical dashed line indicates the expected particle diameter. The estimate of half
of the width of the potential is given by the horizontal gray bar. (b) Pair correlation function, g(r). Experimental g(r) is shown in black. To
compute the inferred g(r), we run a simulation with a representative interaction potential learned via the GNN. The g(r) computed from the
simulation data is shown in green.

repulsion in the interparticle potential that may be exacerbated
at volume fractions significantly higher than 10%.

An alternative method for inferring effective interaction
potentials, called the Iterative Boltzmann Inversion Algorithm
[40,41], begins by setting the inferred pair potential to the
negative log of the pair correlation function. It then iteratively
updates the potential by running simulations and computing
differences between the pair correlation function from simu-
lations run with the approximate potential and the true pair
correlation function from the experiments. While our method
does not yield perfect agreement between the simulated pair
correlation function (green line in Fig. 3) and the experimental
pair correlation function (black dots in Fig. 3), the significant
agreement between the two curves provides further evidence
that we have recovered an effective potential that reflects the
experimental interactions.

Employing our method provides two key advantages over
the iterative Boltzmann Inversion approach to reconstructing
the effective pair potential. Firstly, any approaches based on
calculating g(r), like iterative Boltzmann Inversion, inherit
the uncertainties of the binning procedure used to construct
the coarse-grained g(r). Our approach trains on the full tra-
jectories of the particles without binning, making use of all
available information. Secondly, iterative Boltzmann inver-
sion cannot be applied to derive potentials in nonequilibrium
settings, whereas our maximum-likelihood-based approach
has no such limitations, which we demonstrate in the follow-
ing section.

V. NONEQUILIBRIUM INFERENCE

To demonstrate our method in nonequilibrium settings, we
perform 3D Brownian dynamics simulations on a collection of
particles initialized in one corner of the simulation box and not
permitted to fully equilibrate [Fig. 4(a)]; simulation details are

included in Appendix B. We recover the interaction potential
with comparable accuracy to the equilibrium case [Fig. 4(b)],
though we find that performing inference in nonequilibrium
settings requires substantially more data. Because we are far
from equilibrium, Iterative Boltzmann Inversion and related
methods cannot be applied to this system. This is underscored
by the form of the two-point correlation function, g(r), de-
picted in the inset of Fig. 4(b). An estimate of the potential
constructed by naively inverting the two-point correlation
function would not only change throughout the simulation, but
would differ significantly from the true potential [Fig. 4(b),
main plot, black dashed line].

VI. DISCUSSION

We have demonstrated a general method, rooted in physical
dynamics, for learning interaction potentials from stochastic
trajectory data. We have validated it here on simulated Brow-
nian data, simulated underdamped Langevin dynamical data,
and experimental colloidal data. We expect the method to
generalize to alternative dynamics. For example, straightfor-
ward modifications to the transition probability should allow
application to active particle systems and processes displaying
non-Gaussian noise statistics [42].

Previous work fitting interaction potentials with neural
networks has relied on either (1) data labeled with energies,
as in the case of fitting to data from DFT simulations [16],
(2) deterministic motion, so that matching the deterministic
trajectories could serve as a loss function [15], (3) highly
costly computations, such as full molecular dynamics simu-
lations integrated with the optimization procedure [43], or (4)
assumed forms or bases for the interaction potential [23]. Our
method is well-suited to stochastic data, has an efficient cost
function, does not require labeled data, and works for arbitrary
functional forms.
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FIG. 4. Inference on nonequilibrium data. (a) Snapshots from an
out-of-equilibrium molecular dynamics simulation that we use to
infer the interaction potential. Particles are first equilibrated in a box
of volume V

9 , then allowed to diffuse in a box of volume V throughout
a nonequilibrium simulation. (b) Interaction potential inferred from
nonequilibrium data as depicted in (a). The dark blue line represents
an average over ten different GNN fits, generated using different
random seeds. Inset shows two-point correlation function, g(r), for
the initial (dashed line) and final (solid line) states of the training
data, revealing that g(r)-based inference methods do not work in this
nonequilibrium case while our method continues to perform well.

To our knowledge, our work also constitutes the first time
a stochastic potential inference method has been validated on
bulk experimental data. We have validated our maximum-
likelihood approach by reconstructing both simulated and
experimental potentials using a GNN to describe particle in-
teractions, including a reconstruction from a nonequilibrium
simulated dataset. Our method therefore opens a new frontier
of nonequilibrium experimental settings – including active
matter systems, defects in active nematics, cell-cell inter-
actions, and tribocharged particles – for which interparticle
interaction potentials can be inferred.

There are two primary limitations of our method: the need
for an equation of motion for the system, and the need for
sufficiently well-sampled data. While many systems of inter-
est, including active matter systems, often have well-described
equations of motion, one could also envision interfacing our
method with one that learns an equation of motion [20], a
strategy that has been gaining traction in recent years. The
second limitation is the need for sufficient sampling: if the
data is low-density, the system will not sample close con-
figurations, limiting the accuracy of the inferred potential in
that regime. Likewise, if the �t between adjacent frames is
too large, it becomes increasingly difficult for the maximum
likelihood method to distinguish the deterministic forces from

the stochastic noise. In general, we can therefore be most
confident about the reconstruction in potential minima, where
sampling is likely to be concentrated. However, this is a limi-
tation that applies to all data-driven inference methods.

It is unknown whether this method could resolve two very
different underlying potentials that give rise to similar dynam-
ics – for example, differentiating between the interactions for
a crystal of attractive particles and a crystal of hard-sphere
particles driven to crystallize by entropy. It is possible that the
difference in the underlying potentials could be resolved by
sampling more particle trajectories, but it is also possible that
some prior knowledge would be needed to differentiate them
in certain regimes. One potential method for accounting for
entropic effects at a finite density is to vary the density and
extrapolate to the dilute regime [44], a method that could be
integrated with our approach.

Our method to infer interaction potentials will enable
measurements of interactions in a much broader range of
systems than was previously possible, potentially opening the
door to novel discoveries. We anticipate that this data-driven
approach to analysis of many-particle systems will become
more tractable with computational advancements. Because
our setup allows for easily modified neural network archi-
tectures, as neural networks become more data-efficient, so
will our method. We also anticipate application of our method
to material design, as inferred interactions from complex sys-
tems would allow us to accurately simulate, and thus design
behavior in, otherwise inaccessible materials.
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APPENDIX A: INFERRING PARAMETERS
OF A KNOWN FUNCTIONAL FORM

Our method can also be used to infer parameters of
an interaction potential with a known functional form. We
demonstrate this by inferring the parameters of a Morse
potential

U (r) = ε(1 − exp−α(r−σ ) )2, (A1)

where ε is the depth of the potential well, α is the interaction
range, and σ is the particle size.

We simulate particles interacting via a Morse potential and
seek to find the set of parameters ε, α and σ that maximize
the probability of observing the set of trajectories. To find
the most probable parameters, we perform a grid search over
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FIG. 5. Inferring parameters of a known potential for simulated particles undergoing Brownian motion. (a) True interaction potential is
shown with a black dashed line and inferred interaction potential is shown with a green solid line. The three parameters of the interaction are
inferred simultaneously. (b) Log probabilities of observing the true trajectory for varying values for the depth parameter, ε. The remaining two
parameters are set to the true values. Gray dashed line indicates the position of the value of the true value for ε.

the varying values of ε, α and σ . For each point in the grid, we
compute the negative log likelihood averaged over a set of 128
simulated Brownian particle trajectories of 500 simulation
steps. The simulations are performed in JAX-MD, a molecular
dynamics engine.

We find that we are able to recover the correct parameters
of the interaction potential exactly for the case of simulated
Brownian motion (Fig. 5), with an inferred potential nearly
identical to the simulated potential. As a representative exam-
ple, we show in Fig. 5 the clear peak in the log probability of
observing a value of ε = 1.01, while the true value is 1.0. The
remaining two parameters are similarly recovered, as shown
in Fig. 5.

APPENDIX B: SIMULATIONS

1. Equilibrium

We simulate particle trajectories using JAX-MD [45]. Our
system consists of 128 particles interacting via a Morse po-
tential with ε = 1.0, α = 5.0, σ = 1.0, with either Brownian
or Langevin dynamics. We use a timestep �t = 10−5, a
friction coefficient γ = 0.1, a temperature kBT = 1.0, and
a number density of 0.5. We performed tests for both two
and three dimensional simulated systems. The figures above
show results in three dimensions; we were equally able to
recover the interaction potential for simulations of two di-
mensional systems of particles. We run 50 000 timesteps
and save pairs of frames every 500 steps in order to get
quasi-independent snapshots, and we repeat this procedure
with 500 different random keys that produce different initial
configurations, for a total of 50 000 frame pairs used for
training: (50 000 timesteps/snapshot every 500 steps) × 500
configurations = 50 000. The pairs of frames that we save are
adjacent, separated in time by �t = 10−5. Additional testing
has shown that while using quasi-independent pairs of frames
reduces the amount of data that we need to fit the potential, we
can still infer the interaction potential from frame pairs that
are more highly correlated in time. In the case of inferring pa-

rameters of a known Morse potential, using only 500 pairs of
frames produced results that were nearly as accurate as when
using 50 000. When fitting, we sweep over parameter ranges
ε = [0.5, 1.5], α = [3.0, 7.0], σ = [0.5, 1.5] in increments of
0.1, 0.27, and 0.1, respectively. Results are independent of
choice of range.

When we compute the pair correlation function g(r), we
run a simulation with a representative interaction potential
learned from the GNN. Below, we show the interaction po-
tential used in the simulation plotted against an average of
10 potentials learned via the GNN. These 10 potentials were
computed with different random seeds used in the training
process. The representative potential was chosen to approx-
imate the average inferred potential. We additionally include
the experimental PMF data in the comparison.

2. Nonequilibrium

To infer potentials with nonequilibrated data, we perform
Brownian dynamics simulations of 128 particles interacting
with the Morse potential described above. All simulation
and Morse potential parameters are identical to the equi-
librium case, save for the number density and the friction
coefficient, which we increase to γ = 1.0 to slow the equi-
librium of the particles and therefore more readily sample a
large number of non-equilibrium configurations. To achieve
an out-of-equilibrium configuration, we initialize the system
at a number density of n = 0.9 and allow it to equilibrate
under Brownian motion. Following this initial equilibra-
tion, we increase the box size such that the final number
density was n = 0.1. We increase the steps between saved
frames to 5000 to mitigate the effect of the increased cor-
relations between particles given their initial positions. We
also increase the number of configurations to 5000 and
the simulated runtime to 500 000 timesteps, as performing
nonequilibrium inference requires substantially more data to
perform comparably to the equilibrium case. To perform
the GNN fits shown in Fig. 4, we use a batch size of
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n = 20 and train for 10 epochs. The curve in Fig. 4 is an
average over ten GNN fits initialized with different random
seeds.

APPENDIX C: UNDERDAMPED LANGEVIN DYNAMICS

We here consider the more general case of underdamped
Langevin dynamics, for which the equation of motion is

mr̈ = −∇U (r) − γ ṙ +
√

2γ kBT ξ (t ), (C1)

where r is the vector of particle positions, ṙ is the vector of
velocities, r̈ is acceleration, m is the mass, γ is the friction
coefficient, U (r) is the total interaction potential, kB is the
Boltzmann constant, and T is temperature. We assume that
U (r) can be written as a sum over the interactions between
pairs of particles in the system. ξ (t ) describes the stochastic
thermal noise in the system and is given by delta-correlated
Gaussian noise with mean zero.

Extracting the transition probability from frame i to frame
i + 1, P(ri+1|ri ), is more subtle in the case of underdamped
Langevin dynamics because it is a second-order differen-
tial equation in r. The equation governing the evolution of
a Langevin particle’s phase space probability function, the
Klein-Kramers equation, does not have a general analytic
solution when the interaction potential U (x) is nonzero.

The problem of accurately simulating underdamped
Langevin motion was addressed by the development of
integrators that split equation (C1) into deterministic and
stochastic components and then combine the respective solu-
tions. We base our transition probability estimator on one such
integration scheme, a symplectic MD integrator that uses the
following splitting [46,47]:

(1) Update momenta with increment �t/2;
(2) Update positions with increment �t/2;
(3) Perform a full stochastic step with increment �t ;
(4) Update positions with increment �t/2;
(5) Update momenta with increment �t/2.

This scheme is commonly called the “BAOAB” Langevin
splitting. Given the half-stepped momentum p0 → p1, the
stochastic step draws a new momentum from the distribution

pnew = N
(
c1 p1, c2

2m
)
, (C2)

where c1 = exp−γ�t and c2 =
√

kBT (1 − c2
1 ). Given a tra-

jectory and a proposed interaction potential, we invert this
process until reaching the stochastic step. We begin with a
set of four consecutive frames. We estimate the momentum
in the previous (Pprev) and current (P) step using finite dif-
ferences in the Stratonovich convention. We perform a half
step backwards from P using the inverted momentum update
rule and a half step forwards from Pprev. We then compute
the distribution given in Eq. (C2) using the updated Pprev and
apply it to the updated P to estimate the probability of an
observed change in momentum.

To ensure that the inference does not depend on the
choice of integrator, we simulate using both the “BAOAB”
Langevin integrator and a simpler, second order integrator of
the Langevin equation [48]. Both sets of simulations yield the
same results.

FIG. 6. Inferring parameters of a known potential for particles
undergoing Langevin motion. The true interaction potential is shown
with a black dashed line and the inferred interaction potential is
shown with a green solid line. The three parameters of the interaction
are inferred simultaneously.

We are able to accurately reconstruct the true inter-
action potential from bulk particle trajectories undergoing
underdamped Langevin motion (Fig. 6). In this case, how-
ever, we require 5000 data points to recover parameters with
reasonable accuracy, compared to the only 500 required for
particles undergoing Brownian dynamics. We attribute this
increase to errors introduced by the finite difference estimates
of the momentum, which also leads to a slight decrease in
accuracy of the inferred parameters compared to the Brownian
case. We estimate ε = 0.9 (true value of 1.0), α = 5.3 (true
value of 5.0), and σ = 1.0 (true value of 1.0). Despite these
discrepancies in values, we find good agreement in the func-
tional forms of the potentials (Fig. 6), indicating that there are
covariances among the three parameter estimates.

APPENDIX D: NEURAL NETWORK

The neural network we use to infer the interaction poten-
tial with free functional form is NequIP, an E(3) equivariant
neural network for which the architecture is given in [16]. We
use the JAX-MD implementation of NequIP for training with
the following parameters: a cutoff = 6.0 (approximately six
times the particle diameter), n_elements = 1, hidden_irreps
= 128x0e, sh_irreps = 1x0e, shift = 0.0, and scale = 1.0. We
use the Adam optimizer from optax [28] with a learning rate of
1e-3. We train it on the simulated Brownian dataset described
in Appendix B above, using the full 50 000 data points. Sur-
prisingly, we find good agreement between the neural network
potential and the true interaction potential after only 10 epochs
of training. We also train the network on the 8340 experimen-
tal snapshots described below, obtaining the results in Fig. 3
after 50 epochs of training. Note that we found our results to
depend slightly on batch size: N = 20 produced better results
than N = 50.
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FIG. 7. Mean squared displacement for the experimental data.
Dashed line shows a slope of 0.95. The experimental data is slightly
subdiffusive, with a slope less than 1.

APPENDIX E: EXPERIMENTS

For the experimental validation, we suspend 1.3 µm
charge-stabilized sulfate latex colloidal spheres (Molecu-
lar Probes Lot S37499) in deionized water (output from
Millipore Elix 3 and Millipore Milli-Q Synthesis) and induce
a depletant interaction with carboxymethyl cellulose salt poly-
mers (NaCMC, DS 0.9, �99.5%, Acros Organics, molecular
weight = 700 kDa) with a radius of gyration of 60 nm at a con-
centration of 0.075 mg mL−1. We plasma clean a glass slide
and coverslip for 3 minutes to make the surface hydrophilic.
We pipette the solution into a thin, quasi-2D sample chamber
with a thickness of approximately 5 µm and seal the chamber
with vacuum grease and UV cured glue. We allow the particles
to sediment and deplete to the bottom surface of the cham-
ber. We find that the particles are not immobilized and are
able to freely diffuse across the surface to interact with each
other.

FIG. 8. Inferred interaction potential depends on friction
coefficient. The inferred potential is shown for three different choices
of the friction coefficient.

FIG. 9. Representative vs average potential. The blue line shows
the interaction potential used to compute g(r) from simulations and
the green line shows an average of 10 interaction potentials found
via the GNN with different random seeds. The black dots show
experimental results.

We record bright-field images of these particles using an
inverted bright-field microscope (Nikon Eclipse Ti TE2000)
with a water-immersion objective and correction collar (Plan
Apo VC 60×/1.20 WI, Nikon) and a 1024 × 1024-pixel
CMOS monochrome sensor array (PhotonFocus A1024). We
record videos at a frame rate of 7.164 ms/frame for 1 second
intervals every 30 seconds for 30 minutes, for a total of 60
videos. While the high frame rate means that the data are
highly correlated across frames within a single video, we find
the 30 second intervals between recording to be sufficient to
ensure that each data set is uncorrelated with the previous
video.

APPENDIX F: ANALYSIS OF INFERRED POTENTIALS

By relating the width of the well to the range of inter-
action of the depletion attraction, we implicitly assume that

FIG. 10. Pair correlation function estimate by (green)
simulation with inferred potential and (blue) inverted inferred
potential.
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the depletant particles are equilibrating significantly faster
than the frame rate. We can estimate the equilibration time
scale of the depletants by dividing the square of the ra-
dius by the diffusion coefficient, which we compute via the

Stokes-Einstein relation: τD ≈ a2
d

D with D = kBT
6πηad

, where ad

is the radius of gyration of the depletant particles, T is tem-
perature and η is the dynamic viscosity of water. We find that
τD = 9.5 · 10−4 s, which is 7.5 times faster than the frame
rate.

We additionally assume that the friction coefficient is
known, or that it can be accurately quantified from the data.
If the system is Brownian, the friction coefficient γ can be
determined by computing the mean squared displacement,
〈(�x)2〉 = 2D�t where D is the diffusion coefficient and �t
is the change in time. We can additionally use the equa-
tion D = kBT

γ
to extract the friction coefficient γ . This is the

procedure we use to extract the friction coefficient from the
experimental data. However, the experimental data is slightly
subdiffusive, as shown in Fig. 7. If the experimental data were
perfectly Brownian, the slope of the curve above would be
1.0, rather than 0.95. The friction coefficient has a significant
impact on the inferred potential. If the friction coefficient is

larger, more force is needed for the particle to move the same
distance, so the potential well is deeper (Fig. 8).

Lastly, when we compute the pair correlation function
in Fig. 1, we use simulations of particles interacting via
a representative inferred potential. That representative po-
tential is given in Fig. 9. To check whether the inferred
potential might include artifacts that arise from three-body
and higher-order correlations, we also compare the measured
and simulated pair correlation functions to g(r) = e−βU (r),
where U (r) is the inferred potential. The results are given
in Fig. 10. If the inferred potential were to include features
arising from higher-order correlations, we would expect the
resulting g(r) to have a second peak at r ≈ 2σ or r ≈ 2.6 µm.
Such a peak is seen in both the measured and simulated
g(r), where it arises because the system is not in the di-
lute limit. We do see a small peak at this value in the blue
curve of Fig. 10, but it is not as pronounced as in the mea-
sured g(r). Furthermore, there are other small oscillations
in the blue curve that result in peaks at other values of r.
All of these peaks are more likely to arise from overfitting
than from higher-order correlations influencing the inferred
potential.
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