
It is not difficult to make a holographic microscope,  
a microscope that captures holograms rather than photo-
graphs. One needs only to replace the white light source 
in a standard light microscope with a laser aimed at  
the specimen. The resulting instrument captures in-​line 
holograms1. Although the word hologram might evoke 
images from popular culture, such as projections of Tupac 
Shakur or Princess Leia, a true hologram is not an image 
projected in 3D space. Instead, it is a 2D pattern of bright 
and dark fringes. The fringes of an in-​line hologram form 
when light scattered from the specimen interferes with 
light transmitted through it, as shown in Fig. 1a.

Compared with a conventional photograph, a holo
gram such as the example in Fig. 1b can be difficult  
to interpret by eye. And unlike the vivid, colourful 
photographs captured by optical microscopy, the mono
chrome fringes of a hologram are unlikely to grace a 
journal cover. These concerns raise the question of 
why anyone would want to convert a microscope into a  
holographic microscope.

Our answer is that what is important is not the 
image itself but, instead, what we infer from it. We usu-
ally want to do more than just see a microscopic object; 
we want to precisely quantify its properties — what it 
is made of, how big it is, where it lies in 3D space and 

how fast it moves. This is where holographic microscopy 
excels. Electromagnetic radiation has both an ampli-
tude and phase, but conventional optical microscopes 
capture little information about the phase. By contrast, 
a holographic microscope is designed to capture phase 
information, which is encoded in the fringes. The 
phase information allows us to quantify many features  
of a microscopic specimen. For example, the 3D structure  
and composition of a specimen can be inferred from a 
single 2D hologram. Denis Gabor, the inventor of holo
graphy, showed that shining light through a recorded 
hologram generates a 3D reconstruction of the light scat-
tered by the original object2,3. Reconstruction has enabled 
non-​invasive 3D imaging of colloidal particles4–6, mate-
rial microstructures7, microorganisms4,7–10 and living  
eukaryotic cells11–13. More complex optical set-​ups can 
provide additional information about phase changes 
within a specimen14–16 and yield tomograms of complex 
3D specimens17,18.

This Primer focuses on an alternative analysis 
methodology: extracting information directly from the 
hologram without reconstructing it. The analysis relies 
on physics-​based models of how microscopic objects 
scatter light. Unlike reconstruction, model-​based 
analysis requires prior information about the object’s 
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shape and structure. This information influences the 
choice of model. For objects such as colloidal particles, 
which might be described as spheres19–21, ellipsoids22, 
sphero-​cylinders23 or clusters of spheres24, models can 
be based on exact solutions to Maxwell’s equations that 
describe the scattering. For other specimens, such as liv-
ing cells, either the scattering can be numerically simu-
lated23,25,26 or the specimen can be modelled as a simpler 
shape, such as a sphere. In each of these cases, the scat-
tered field Escat(r) is a function of the object’s 3D posi-
tion (r), orientation, refractive index and size. We can 
predict the intensity I(r) of the hologram by accounting 
for the interference with the reference field Einc(r):

I αr E r E r( ) = ( ) + ( ) (1)inc scat
2

where the phenomenological parameter α accounts for 
imperfections in the illumination21.

Modelling enables three different approaches to holo-
gram analysis. In the first, we directly fit the model to an 
experimentally captured hologram to infer information 
about the object — a generative modelling approach. In 
the second, we use modelling to train an algorithm to clas-
sify and quantify features from experimentally captured 
holograms — a machine-​learning approach. In the third, 
we use machine learning to estimate parameters and then 
refine these estimates by fitting a generative model — a 
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Fig. 1 | Hologram formation and analysis. a | Incident coherent light (light blue) interferes with the light scattered (dark 
blue) by a specimen. Useful information about the specimen can be extracted from the resulting interference pattern, or 
hologram, shown as the intensity across its centreline. b | Holograms, best fits and 3D renderings of a single sphere, sphere 
doublet and a capsule-​shaped bacterium. Best-​fit holograms and 3D renderings are generated from the estimated proper-
ties of the specimen, including position, diameter and refractive index. c | Hologram analysis yields information that is use-
ful for applications. Analysing many holograms from the same object as a function of time can reveal its motion in 3D space 
or how its properties change. Analysing holograms from a population of objects can differentiate multiple species within a 
sample. Finally, analysing a hologram from a population of objects over time can reveal changes in the distribution of pro
perties. Yellow scale bars = 5 μm; orange scale bars = 1 μm. dp, particle’s diameter; np, particle’s refractive index; xp, yp and zp, 
particle’s position. Part b (bottom row) adapted with permission from ref.114, Optica Publishing Group.

Fringes
The bright or dark bands in an 
image that are produced by 
the interference of light.

Holographic microscopy
The use of a microscope with a 
coherent or semi-​coherent light 
source to record holograms of 
microscopic objects.

Reconstruction
The process of illuminating a 
hologram with a beam such 
that the hologram acts as a 
diffraction grating.
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hybrid approach. As we shall show, a lot of information 
can be extracted from a hologram, including the object’s 
size, orientation and composition, as well as its 3D loca-
tion (Fig. 1b). The uncertainties in these measurements 
can be remarkably small. The size and 3D position of a 
microscopic object can be measured to nanometre-​scale 
precision, whereas the refractive index and orientation 
can be measured to parts per thousand precision21.

Where high-​precision measurements are the main 
goal, a model-​based analysis has several advantages over 
reconstruction. First, model-​based analyses directly give 
values and uncertainties for quantities of interest. By con-
trast, reconstructions and tomograms are images — albeit 
3D ones — that do not quantify the properties of the spec-
imen without further analysis. Second, models account 
for the complex scattering of objects similar in size to the 
wavelength of light, such as colloidal particles or bacteria. 
For such objects, diffraction can distort reconstructions27. 
Third, model-​based analyses yield precise results even 
with the simplest optical set-​up, the in-​line configuration 
shown in Fig. 1a. Unless otherwise stated, in this Primer 
we use the term holographic microscope to refer only to 
this microscope configuration.

The wealth and precision of information that can be 
extracted from in-​line holograms with a model-​based 
approach enable a host of applications, including 3D 
tracking of colloidal particles, measuring the forces 

exerted by cells, analysing the composition of com-
plex dispersions and performing sensitive biochemical 
assays (Fig. 1c). Many of these applications benefit from 
the speed of a holographic microscope. Holograms can 
be collected as quickly as the camera records images 
because no mechanical adjustments are needed to keep 
the object in focus; any movement in the axial direc-
tion can be measured from the fringes. Typically, analy
sing holograms takes more time than acquiring them. 
However, many sensitive and sophisticated analyses can 
be done in near real time on a personal computer.

The model-​based approach requires a careful choice 
of analytical method and some prior knowledge of the 
sample. As a result, it has some limitations, which we 
discuss in the penultimate section of the Primer. Other 
sections explore how to create and use a holographic 
microscope, how to analyse the data, what measure-
ments can be made, and what reproducibility issues 
might be encountered and how to overcome them. In 
the final section we consider the future of model-​based 
analysis, an emerging paradigm for microscopy.

Experimentation
Instrument layout. One can convert an optical micro-
scope into an in-​line holographic microscope by 
making the illumination coherent, as shown in Fig. 2a. 
The new illumination source can be either a laser or a 

Tomograms
Images recorded by a 
penetrating wave that 
represents a cross section  
of a 3D object.

Colloidal particles
Nanoparticles or microparticles 
suspended in a fluid or other 
medium.

Scattering
The interaction of 
electromagnetic radiation with 
an object resulting in a change 
in the direction of the light.

Coherent
Light that has a narrow 
distribution of frequencies and 
a well-​defined phase, such that 
interference can be observed.
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Fig. 2 | Detailed set-up of an in-line holographic microscope. a | Beam path and optical layout for an in-​line holographic 
microscope with coherent illumination. A single-​mode fibre coupled to the laser spatially filters the beam. The filtered beam 
(red) is steered to the sample plane, where it scatters from the specimen. The scattered and transmitted beams go through 
the objective and tube lens to the detector. b | Photograph of an in-​line holographic microscope with a fibre-​collimated 
laser source and no condenser lens, built on a standard inverted optical microscope. c | Photograph of an in-​line microscope 
with a light-​emitting diode (LED) source, where the inbuilt condenser lens collimates the partially coherent source.
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partially coherent source, such as a single-​colour light-​
emitting diode (LED). The illumination beam should 
be collimated and directed into the sample. Light pass-
ing through the sample is collected by the microscope’s 
objective lens and projected by its tube lens onto an area 
sensor, typically a complementary metal oxide semi
conductor camera. If the sample is not too dense or  
opaque — the usual condition under which optical 
microscopy is performed — the incident beam will be 
weakly scattered, such that most of it is unperturbed. 
This unperturbed, transmitted light then interferes with 
the light scattered by the sample to form a hologram.

To integrate a coherent illumination source with the 
microscope, we place a fibre-​collimated laser with nar-
row spectral bandwidth28 between the illuminator and 
the phase ring turret/condenser, as shown in Fig. 2b. We 
use single longitudinal-​mode diode lasers because they 
are inexpensive and bright. Furthermore, their coher-
ence length is not too large, so that reflections from var-
ious glass surfaces in the microscope do not produce 
extraneous interference in the hologram. Alternatively, 
one can use a partially coherent source, such as an LED, 
as shown in Fig. 2c. The low temporal and spatial coher-
ence of LEDs can further suppress extraneous fringes 
and speckle relative to a diode laser29. The longitudi-
nal coherence length of commercially available LED 
sources is in the order of a few micrometres, which is 
large enough to obtain holograms of objects smaller 
than this scale, such as colloidal particles. Inserting a 
pinhole between the LED and the sample increases the 
spatial coherence but also reduces brightness30,31. One 
must collimate the LED source by adjusting the distance 
between the LED and the microscope’s inbuilt condenser 
lens. If the illumination source is already collimated, the 
condenser can be removed from the beam path.

Model-​based analysis of holograms is most effective 
if the incident mode has the simplest possible structure. 
Therefore, we spatially filter the illumination source by, for 
example, coupling the laser source to a single-​mode fibre. 
The illumination beam can then be reasonably described 
as a plane wave. We set or measure its polarization, which 
we need to model the scattered field.

The choice of objective lens depends on the size of the 
object to be imaged. For micrometre-​scale objects, we 
use an objective with a high numerical aperture, such as 
an oil-​immersion or water-​immersion lens. Although a 
water-​immersion objective has a lower numerical aper-
ture than an oil-​immersion objective, it is potentially 
more useful for aqueous specimens because it reduces 
the spherical aberration introduced by a glass coverslip32. 
In either case, it is important to select an objective that 
does not contain a phase plate, an inbuilt optical element 
used for phase-​contrast microscopy, which would distort 
a hologram.

It is also possible to eliminate the objective lens 
altogether. One can construct a lensless holographic 
microscope from a coherent light source, a pinhole and 
a sensor placed close to the sample30,33. Lensless micro-
scopes tend to have a small effective numerical aperture 
and a large effective pixel size. They therefore cannot col-
lect the strongly diverging light scattered by small parti-
cles or resolve finely spaced interference fringes. Lensless 

holography therefore is most effective for tracking and 
characterizing particles that are several times larger than 
the wavelength of light.

Sample preparation. Scattering from the sample cham-
ber can add unwanted background interference to a 
hologram. To minimize background interference, we 
place our specimens in a sealed sample cell consisting of 
two glass coverslips separated by a spacer about 100 μm 
in height. The spacers can be silicone-​based vacuum 
grease, double-​sided tape, thin strips of plastic affixed 
with UV-​curable epoxy or silicone gaskets. We avoid 
evaporation and undesired flow by sealing the chamber 
with silicone grease or epoxy.

Some experiments require the sample to flow through 
the microscope’s observation volume. To make a simple 
flow chamber, we place spacers between two glass sur-
faces and leave the edges unsealed. We then add a droplet 
or an absorbent material to one end to draw fluid through 
the channel by capillary action. To drive flow in more 
sophisticated flow chambers, such as microfluidic chips34, 
we use syringe pumps or pressure pumps. We reduce inter-
ference due to reflections by making the channels wider, 
imaging the objects or particles only when they are a few 
micrometres away from the walls or matching the refrac-
tive index of the fluid medium to that of the wall material. 
Flow enables high-​throughput experiments, but one can 
also use an automated stage and a multi-​well sample plate 
to carry out such experiments without flow.

Interfaces between fluids with different refractive 
indexes can significantly distort holograms. Holograms 
of particles at or near an interface should therefore be 
made in regions where the interface is flat. To encourage 
an air–water or oil–water interface to remain flat, we pin 
the interface35 using a machined or 3D-​printed chamber 
with a thin, flat lip.

Holograms can also be degraded by non-​uniform 
illumination36, by undesired scattering from dust parti-
cles or other out-​of-​focus objects and by optical aberra-
tions37. If the hologram formation model does not correct 
or account for these effects, they can introduce errors 
into the inferred information. A spatial filter can allevi-
ate non-​uniform illumination, whereas a low-​coherence 
source, such as a laser diode or LED, can attenuate 
holograms from out-​of-​focus objects. Cleaning the  
coverslips — by, for example, plasma cleaning, rinsing 
with purified water and drying with nitrogen — reduces 
background scattering from dust in or on the sample 
chamber. If the sample solution is sufficiently dilute, the 
hologram of the object of interest will not substantially 
overlap with holograms of other objects. Typically, the 
sample should be dilute enough for the particles or objects 
to be at least a few micrometres apart38. With a dilute sys-
tem, one can also record images with no objects in the 
field of view and use these images to correct for back-
ground scattering. Finally, a water-​immersion lens can 
minimize the effects of spherical aberration. Alternatively, 
spherical aberration can be incorporated in the model37.

Data collection. The camera on a holographic microscope 
does not need to be expensive. For experiments involv-
ing a single illumination source, we use a monochrome 

Collimated
A beam of light with parallel 
rays.

Objective lens
A lens or collection of lenses 
that focus and magnify light  
to form an image.

Tube lens
A lens or series of lenses that 
focus parallel rays to form an 
image on a sensor or eyepiece.

Speckle
Fluctuating bright and dark 
regions in an image that arise 
from extraneous scattering and 
interference.

Spherical aberration
A type of optical aberration  
in which rays nearer the edge 
of a lens are deflected more 
than those near its axis.

Capillary action
Flow driven by interfacial 
tension.

Syringe pumps
Volumetrically controlled 
pumps that deliver fluid  
by moving a syringe piston, 
typically resulting in a constant 
flow rate.

Pressure pumps
Pumps that are pressure-​ 
driven and have controllers  
to maintain constant pressure.
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sensor, because the filters on a colour sensor reduce 
sensitivity and spatial resolution. Shortening the expo-
sure time reduces motion blurring39,40 at the expense of 
the overall image intensity. Increasing the illumination 
intensity can compensate for this effect. The quality of the 
recorded image is limited by the signal-​to-​background 
ratio, which favours photodetectors with a dynamic range 
large enough to capture bright fringes without satu-
ration and dark fringes without underexposure. High 
quantum efficiency is not necessary and can be counter-
productive, as the reference wave produces a large back-
ground signal that can saturate a high-​efficiency detector. 
Therefore, the cooled, high quantum efficiency, expen-
sive cameras used in single-​molecule and other preci-
sion microscopy techniques are unsuited to holographic 
microscopy.

Fast cameras enable experiments on fast-​moving or 
quickly changing specimens. They require hardware 
that can handle their high data rates. For example, a 
1-​megapixel camera operating at 1,000 frames/s trans-
fers 1 GiB/s of 8-​bit greyscale images to a computer. 
This computer needs a fast interface — the latest USB, 
10-​Gb ethernet or a proprietary connection, often oper-
ating on a dedicated controller card — a fast internal 
bus to transfer the data and a solid-​state drive with a 
high write speed. We recommend a computer with the 
latest peripheral component interconnect express (PCIe) 
bus for rapid, parallel data transfer and, ideally, a large 
amount of random access memory (RAM) to buffer  
the data stream. Many cameras come with their own 
proprietary control software, but the academic commu-
nity has also developed open-​source software such as 
μManager41, which can be used to control various models  
of camera and the microscope itself.

Some processes, such as cells flowing through a chan-
nel at high speed42, may be so fast that features of interest 
are blurred even at the shortest camera exposure times. 
For such processes, we pulse a laser diode to illuminate 
the samples for a short time (microseconds), as in strobe 
photography. Many cameras include synchronization 
input and/or output ports. We use these ports to syn-
chronize the camera and laser diode with each other or 
with a pulse generator43,44.

Results
Holograms encode comprehensive information about 
the position and composition of individual particles 
or biological specimens. In a model-​based analysis, we 
extract this information by fitting a generative model 
to the hologram20,21,23,45–47, by analysing the hologram 
with a trained machine-​learning system48–50 or by some 
combination of the two. Although all three approaches 
require minimal processing of the hologram, some 
pre-​processing is beneficial for reliable results. We typi-
cally normalize holograms by subtracting the dark count 
from both the raw hologram and background and then 
taking their ratio51, as shown in Fig. 3. These linear 
transformations remove instrument-​dependent effects 
and facilitate comparison with models. We obtain dark 
counts by recording images with the illumination off, 
and we obtain background images by recording fields of 
view with no particles in frame, ideally at the same axial 
position as the data.

After normalization, we crop the hologram to the 
region of interest, which is typically a few hundred  
pixels wide. The size of the cropped hologram should be  
large enough to capture many hologram fringes, but small 
enough to avoid overlap with nearby objects. We auto
mate this process by using algorithms based on Hough 
transforms39,52,53 or machine learning49,50.

The computational power required to extract infor-
mation about the specimen depends on the number of 
pixels in the hologram. However, the fringes of a holo-
gram are often symmetric, and therefore much of the 
information is redundant. Consequently, most of these 
pixels can be discarded. Dimiduk and Manoharan found 
that by randomly selecting54 just 2.5% of pixels and dis-
carding the rest, they could accurately analyse holograms 
while reducing the computational time by an order of 
magnitude55. Selecting a random subset of pixels is now 
a standard part of our hologram pre-​processing routine.

Generative modelling. To explain the generative model
ling approach, we first consider inferring physical 
information about a single spherical particle from its 
hologram, as shown in Fig. 4. A generative or forward 
model can realistically simulate the hologram of such 

Raw hologram Background Dark count Normalized hologram
(background divided,
dark count subtracted)

Normalized cropped 
hologram

Fig. 3 | Data normalization for hologram analysis. To normalize a hologram, we subtract a frame-​averaged dark count 
(middle) from a raw hologram (far left) and then divide by a dark count-​corrected background image (second from left).  
We then crop the normalized hologram (second from right) around the feature of interest associated with a particle  
(far right). The extent of the cropped hologram depends on the size of the specimen and its distance from the focal plane. 
Purple scale bars = 15 μm; yellow scale bar = 5 μm.

Dynamic range
The range of intensities that  
a sensor can record.

Quantum efficiency
A measure of the sensitivity  
of a detector, determined by 
how many incident photons  
are converted into electrons.

Dark count
The intensity recorded by  
a sensor or camera in the 
absence of a signal.
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a particle as a function of its position, size and optical 
properties. One can then fit the model to the data to 
infer these parameters. The simplest fitting approach is 
to iteratively modify the parameters until the differences 
between the model and data are minimized.

A generative model of a single spherical object 
might use Lorenz–Mie theory19 — the exact solution 
to Maxwell’s equations for scattering from a spherical 

particle — to calculate the scattered field. It would then 
simulate a hologram by calculating the interference 
between this field and a planar reference wave20,21. Such 
a model includes six parameters: the size and refractive 
index of the sphere, its 3D position and α, the phenome-
nological parameter from Eq. 1. The hologram recorded 
on the detector is treated as a magnified image of the 
hologram at the objective’s focal plane.
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Machine-learning approach

Unnormalized raw hologram

Normalized cropped
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Fitting algorithm
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Best fit with uncertainties

Trained CNN

Estimated centre 
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Localized hologram

Estimated propertiesHybrid approach

Use the estimated properties
found with machine learning as
the initial guess for fit with
generative model

Fig. 4 | Approaches to quantitative analysis of holograms. Flow chart of 
approaches to hologram analysis, in which a single colloidal sphere serves 
as an example specimen. In a machine-​learning approach, neural networks 
trained with generated data detect, localize and estimate the properties of 
particles. In the localization module, an object-​detection convolutional 
neural network (CNN) detects any holographic features in a normalized 
field of view and determines the centre, xp and yp, and extent of each 
detected feature. A property estimation module, which is also a CNN, 
estimates the particle’s diameter dp, refractive index np and axial position zp 
from the cropped holograms. In a generative modelling approach, the first 

steps are normalizing and cropping the field of view around the hologram 
of interest, which is automatically detected with a Hough transform.  
A non-​linear least-​squares or Markov-​chain Monte Carlo algorithm then  
fits a generative model of hologram formation to this cropped hologram.  
A non-​linear least-​squares fit requires an initial guess, which can be 
informed by experimental expectations, and returns the best-​fit parameters 
and their uncertainties. In the hybrid approach, a machine-​learning module 
first estimates the parameters, and a fitting module then refines these 
estimates using the parameters from the machine-​learning module as the 
initial guess to the fit. Turquoise scale bars = 10 μm; yellow scale bars = 5 μm.
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To fit this model to a recorded hologram, one can 
use a non-​linear least-​squares method such as the 
Levenberg–Marquardt algorithm56. If the fitting algo-
rithm is given a good initial guess, it can find parameter 
values that globally minimize the discrepancy between 
the model and the recorded hologram. Fitting the 
single-​sphere model to data yields precise estimates of 
the sizes, optical properties and 3D positions of individ-
ual colloidal particles21. This approach has been applied 
to measuring diffusion57,58, quantifying interactions 
between a sphere and fluid interface35,59,60, tracking par-
ticle motion in an optical trap61–63, differentiating spe-
cies of particles within a mixture49,64–66, measuring the 
growth of colloidal particles during chemical synthesis67 
and inferring the refractive index68 and rheological pro
perties69 of the medium in which the spherical particles 
are embedded.

Perhaps more surprisingly, the single-​sphere model 
is a useful approximation for non-​spherical objects 
such as dimpled spheres51, protein aggregates66,70, col-
loidal aggregates71,72 and dimers of colloidal spheres73. 
The advantage of using a single-​sphere approximation 
to model these systems, compared with a more realistic 
model, is that the single-​sphere model can be fit more 
rapidly to the data. The speed of fitting makes it par-
ticularly useful for high-​throughput applications, such 
as industrial quality assessment and process control70, 
wastewater treatment74 and slurry analysis66,75, in which 
particle size and composition must be determined 
continuously in real time.

Where analysis speed is not the primary concern, 
Bayesian parameter estimation can yield more detailed 
information on uncertainty and can more easily incor-
porate prior information than non-​linear least-​squares 
fitting. A non-​linear least-​squares fit yields a single set 
of parameters that best fits the data, whereas a Bayesian 
analysis yields the posterior probability density (posterior)  
of all possible combinations of parameters. Peaks in the  
posterior correspond to sets of parameters that fit  
the data well and are not excluded by any prior informa
tion. The prior information might include a previous 
calibration of the particle size distribution or the antic-
ipated refractive index of the material. The width of a 
peak in the posterior characterizes the uncertainty of the 
parameter estimates.

The Bayesian approach can also determine marginalized  
uncertainties (Fig. 4), which account for correlations 
between parameter estimates55. For example, the best-​fit 
particle size is typically correlated to the axial position, 
as both affect the fringe spacing. If one cares only about 
the particle size, one can marginalize — or integrate 
out — the axial position, effectively incorporating its 
correlations into the uncertainty of the size estimate. 
Marginalization yields realistic uncertainties. It is parti
cularly useful for fundamental studies that test theories 
of dynamics or interactions, and for applications that 
have specified tolerances — for example, on particle size.

More complex generative models can be used 
for non-​spherical specimens. Exact solutions to 
Maxwell’s equations exist for spheroids, ellipsoids, 
sphero-​cylinders, coated spheres and small collections 
of spheres76. There are also numerical models for these 

shapes and for many others, including those with no 
exact solutions23. Generative models for these speci-
mens, such as models for single spheres, calculate the 
scattered field and simulate its interference with a planar 
reference wave. But models of non-​spherical specimens 
have additional parameters such as shape, orientation 
or multiple refractive indices and radii. Consequently,  
it takes more time to fit such models to the data.

Generative models can also account for the effects of 
the microscope’s optical train. The single-​sphere model 
approximates the scattered field poorly when the parti-
cle is close to or below the focal plane. The inaccuracies 
of the model therefore limit the depth of field available 
for particle tracking. To circumvent this problem, Leahy 
et al. modelled the effects of an objective lens on the 
hologram of a spherical particle and then fit this model 
to data. They found that for a 2.4-​μm sphere imaged with 
a water-​immersion lens, the region of accurate track-
ing increased by a factor of two relative to a lens-​free 
model77. Martin et al. showed that extending this model 
to incorporate the effects of spherical aberration, a 
common aberration in optical microscopy, increases 
the accuracy of particle characterization37. These lens 
models work with scattering models for either spheri-
cal or non-​spherical objects. For non-​spherical objects, 
they are slow because they must numerically integrate 
the scattered field to calculate the effect of the objective78. 
For spheres, they are quick because the integral can be 
analytically simplified.

A Bayesian approach is useful for more complex 
models because it can account for the many ways a 
model might fit the data. Consider a capsule-​shaped 
bacterium that has a small shape asymmetry between its 
head and tail. Even if the generative model includes this 
asymmetry, fitting might not unequivocally determine 
the bacterium’s orientation from the hologram. In the 
presence of noise, both orientations might fit the data 
equally well. In this case, the posterior would show two 
modes, one for each orientation, accurately reflecting 
the uncertainty in the measurement. This uncertainty 
can then be propagated to other quantities. If prior 
information excludes one orientation — for example,  
if the bacterium is swimming in a known direction — 
this information would be reflected in the posterior, 
which would have a single peak.

For the Bayesian approach, we use Markov-​chain  
Monte Carlo (MCMC) methods79 to calculate the poste-
rior probability and to obtain marginalized uncertain-
ties. Some MCMC methods require a good initial guess, 
which can be obtained using algorithms such as covar-
iance matrix adaptation evolution80. Other methods, 
such as Hamiltonian Monte Carlo81 and parallel tem-
pered MCMC sampling82, do not require a good initial 
guess. We use these methods to efficiently explore the 
high-​dimensional parameter spaces of complex models.

The choice of generative model depends on the exper-
imental aims. When the aim is to track a spherical object 
in three dimensions, we recommend a generative model 
that includes lens effects. With such a model, one can fit 
holograms above and below the microscope focal plane. 
When the aim is to characterize the properties of spher-
ical objects, we recommend using a generative model 

Bayesian parameter 
estimation
A statistical inference 
technique yielding the 
probability distribution of  
the parameters of a model 
given the data.

Marginalized uncertainties
The uncertainties in a model 
parameter determined by 
accounting for correlations  
with other parameters.

Markov-​chain Monte Carlo
(MCMC). A numerical method 
that uses a biased random 
walk through the parameter 
space to both estimate a 
probability distribution and 
integrate it.
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that accounts for spherical aberration. Such a model 
enables more accurate quantification. When the aim is 
high-​throughput characterization, we recommend using 
a single-​sphere approximation, which allows real-​time 
analysis. One rarely has to write the generative model 
from scratch. Open-​source packages such as HoloPy83 
and pylorenzmie include generative models for differ-
ent types of particles and lens effects. They also include 
non-​linear least-​squares and MCMC methods to fit these 
models to data. Tutorials are available for HoloPy and 
pylorenzmie.

Machine-​learning analysis. Machine learning offers 
alternatives to conventional algorithms for feature 
identification84,85, particle tracking86 and quantitative 
hologram analysis13,20,21. As with the generative model
ling approach, the aim is to determine an object’s 
position and properties directly from its hologram. 
But instead of modelling the physics of image forma-
tion, convolutional neural networks (CNNs) or support  
vector machines recognize, classify or characterize objects 
based on training data. In general, machine-​learning 
approaches work well on problems with many degrees 
of freedom; they recover low-​dimensional solutions that 
classify or characterize the data87. For holography in 
particular, machine-​learning approaches are well suited 
to problems where generative modelling is computa-
tionally expensive, such as characterizing particles in a  
high-​throughput experiment.

We use machine-​learning approaches to tackle three 
types of analysis problems in holography: localization — 
estimating the hologram’s centre and extent in the field 
of view49,50,88; property estimation — characterizing the 
object’s refractive index, diameter and axial position48,89; 
and classification — differentiating and labelling the 
structure of the particle90. Combining the modules used 
for each of these analysis steps results in a full end to end 
analytical pipeline for holograms50.

Each of these three tasks requires training a model. 
Training consists of feeding holographic image data 
with known parameters — such as known particle size 
and position — to the model, which learns to recog-
nize patterns in the data and the parameters. In many 
machine-​learning applications, one must gather and 
manually annotate training data. The cost of human 
labour in this process limits how much training data can 
be produced, and thus reduces the model’s accuracy. The 
application to holographic microscopy has an advantage 
because the generative models can rapidly generate large 
amounts of properly annotated training data.

The amount of training data needed for an analysis 
task depends on the size of the parameter space and the 
desired precision of the classification. For the training 
data to span the range of interest R(pj), where pj is one 
parameter in a set of M coupled parameters and pΔ j is 
the desired resolution of that parameter, the number  
of training elements must scale as N R p p≤ ∏ ( )/Δj

M
j j=1 , 

where the upper limit corresponds to calculating every 
possible solution. For non-​spherical objects, the training 
data must span all possible orientations, positions, sizes 
and refractive indices. Sampling approaches can reduce 
the number of elements below the upper bound.

To better match experimental conditions, one can 
intentionally degrade the simulated holograms with either 
uniform Gaussian noise50 or noise directly extracted 
from the experimental holograms, including both cam-
era noise and time-​varying fluctuations90. Adding noise 
prevents the model from overfitting experimental data, 
thereby improving the accuracy of the results50,90.

Training involves optimizing the parameters of the 
model to accurately fit the labelled training data. Various 
optimizers are available, including Adam91, root mean 
square propagation and stochastic gradient descent92. 
Activation units such as ReLU enable the model to learn 
complicated functions and facilitate rapid training93. 
In our experience, the training speed is limited by how 
quickly training data can be generated, although that 
process can easily be parallelized and is a one-​time cost. 
With current computing clusters, we can generate data 
and train a model in a few hours90.

The first step in hologram analysis is localization, 
which involves finding the regions of interest in a holo-
gram that correspond to particular objects, as shown in 
Fig. 4. CNNs are particularly well suited for object detec-
tion and localization48,50,94. We first train the CNN on 
synthetic holograms with variable numbers of particles. 
The CNN then takes a greyscale image input and returns 
a set of cropped images centred on each particle, along 
with the estimated parameters of the hologram centre, 
xp and yp, and the extent of each detected feature. We can 
then use the number of identified features to measure 
particle concentrations or pass each cropped hologram 
to another module for further analysis.

Machine-​learning algorithms are both more accurate 
and more robust than conventional object detection 
algorithms39,85, yielding much lower rates of false posi-
tive and false negative detections. The localization algo-
rithm used by Altman and Grier50, for example, missed 
fewer than 0.1% of simulated holograms across a wide 
range of particle sizes, refractive indexes and positions. 
By contrast, conventional algorithms missed up to 40%.  
This ability to detect particles over wide regions of the 
parameter space is necessary for robust, unattended  
particle tracking and characterization.

After localizing and cropping the hologram, we use 
other machine-​learning systems, such as CNNs50,89 or 
support vector machines48, to estimate the properties of 
the objects. First, we scale the block of pixels identified 
in the localization stage down to a standard size, which 
enables the algorithm to accommodate holograms with 
different extents in the camera plane. The network then 
reduces the dimensionality of the data until it outputs 
values for the particle properties, including diameter dp, 
refractive index np and axial position zp.

Although the generative modelling approach yields 
more precise and accurate property estimates, machine 
learning is faster and more flexible50. End to end pro-
cessing of a full-​frame hologram takes 30 ms or less50. In 
addition, machine-​learning models require little tuning 
or prior knowledge of the system, and they are more 
resilient to artefacts that can hinder the performance of 
generative models50.

Machine-​learning methods can also classify the struc-
ture of a specimen. For example, CNNs can recognize 

Convolutional neural 
networks
(CNNs). Machine-​learning 
algorithms that use convolution 
layers to process 
higher-​dimensional image 
data.

Support vector machines
Machine-​learning algorithms 
that distinguish data points 
using hyperplanes in a 
high-​dimensional parameter 
space.

ReLU
The rectified linear activation 
function, a piecewise function 
that returns zero for negative 
inputs and returns the input for 
positive inputs.
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and differentiate clusters of colloidal particles bound 
by short-​range attractions95. Because the range of the 
attraction in such clusters is only about 10% of the par-
ticle diameter, standard optical microscopy techniques 
cannot easily distinguish bound and unbound particle 
pairs. Furthermore, the computational cost of fitting a 
model to the hologram is high. Klein90 instead detected 
differences in cluster configurations using a standard, 
pre-​trained CNN image classifier96 that was re-​trained 
with simulated holograms augmented with experimen-
tally extracted noise. The re-​trained CNN extracted 
hierarchical features from the hologram and classified 
them to determine the configuration of particles. Klein 
found that after including experimentally extracted 
noise in the training data, the re-​trained CNN could dif-
ferentiate six different ground states of a seven-​particle 
cluster — including two states differing by only one pair 
of bound particles — with 60–80% accuracy.

Free, open-​source software50 — Characterizing and  
Tracking Colloids Holographically (CATCH) — is avail
able for end to end analysis of holograms from spheres and 
other particles that can be usefully modelled as spheres. 
A tutorial (CATCH) is available. For other applications, 
models must be built and trained. However, the archi-
tecture of the neural network does not need to be rebuilt 
for each problem; instead, existing machine-​learning 
frameworks for image analysis can be used90.

Hybrid approaches. Current machine-​learning methods 
for analysing holograms are fast and robust, but not as 
precise or accurate as generative modelling approaches. 
Conversely, generative modelling approaches are 
highly precise and accurate, but incur higher computa-
tional costs than machine-​learning methods. A hybrid 
approach offers the best of both worlds: fast, automated 
analysis with high precision.

A hybrid analysis pipeline begins with a machine-​ 
learning stage. From a full-​frame hologram, a trained 
network automatically localizes and crops holograms 
corresponding to individual objects. It then estimates 
their properties, which might include their refractive 
indices, diameters and axial positions. In a second stage, 
an algorithm fits a generative model to each cropped 
hologram, using the machine-​learning estimates as  
initial guesses.

Machine learning eliminates the need for human 
input to the fitting routine. The algorithm determines 
the number of objects in the field of view, the extents of 
their holograms and the initial guesses required to fit 
the model to the data. This hybrid approach also enables 
fully parallel analysis of time-​series data. In a generative 
modelling approach, one usually derives initial guesses 
for each frame in a time series from the best-​fit para
meters of the previous frame. Consequently, the frames 
must be analysed sequentially. But the machine-​learning 
approach provides initial guesses for all frames, which 
one can use to fit generative models to all frames in 
parallel.

In principle, machine-​learning approaches could also 
select the appropriate generative model by classifying the 
structure and shape of the specimen. Such an approach 
could automate the entire hologram analysis pipeline.

Applications
The direct analysis of holograms has enabled new, 
high-​precision measurements of colloids, soft materials 
and biological systems. In this section, we highlight a 
few examples.

Colloidal dynamics and self-​assembly. The precision 
enabled by the generative modelling approach was 
crucial to discovering an unexpected feature of colloi-
dal systems. Since the early twentieth century, it was 
known that micrometre-​sized solid particles could stick 
irreversibly to the interface between two fluids97. This 
phenomenon, driven by surface tension, is the basis for 
making the solid-​stabilized Pickering emulsions now 
used in foods98, oil recovery99 and many other applica-
tions100,101. The interface can also serve as a scaffold that 
guides the self-​assembly of these colloidal particles102. 
Until recently, it was assumed that the particles would 
approach the interface, breach it and then immediately 
reach an equilibrium position, as shown in Fig. 5a.

Holographic microscopy showed that, contrary  
to initial assumptions, the particles take a long time to  
relax to equilibrium after they breach the interface. 
Kaz, McGorty et al.35 used radiation pressure to push 
a particle upwards to a planar oil–water interface while 
measuring its height using a holographic microscope. 
By fitting a single-​sphere generative model to the 
holograms, they were able to measure the height to 
nanometre-​scale precision on millisecond timescales 
(Fig. 5a). With this combination of high spatial preci-
sion and high temporal resolution, they observed the 
motion of the particle immediately after the breach and 
showed that it scales logarithmically with time (Fig. 5a). 
The long duration of the measurement allowed them to 
observe this scaling over multiple decades and enabled 
comparison with theory. The logarithmic behaviour is a 
signature of pinning and depinning of the three-​phase 
contact line on the particle, which leads to surprisingly 
long relaxation times — of the order of months for a 
micrometre-​scale particle.

Later holographic microscopy experiments showed 
that this long-​time relaxation is common to many differ-
ent types of colloidal particles59,60,103. Wang et al.22 showed 
that when ellipsoids breach an interface, the particles 
rotate far more slowly to equilibrium than previously 
predicted. They revealed this motion by fitting a gen-
erative model for scattering from an ellipsoidal particle 
as a function of orientation and position. These studies 
illustrate how the generative modelling approach lever-
ages the strengths of holographic microscopy: its acqui-
sition speed, high dynamic range and sensitivity to the 
3D position and orientation of the particle.

Holographic microscopy is also well suited to answer 
questions about how colloidal particles interact and dif-
fuse. The structure and dynamics of these systems are 
difficult to determine with standard optical microscopy 
because the interactions are so short ranged — a few 
tens of nanometres — and because the particles diffuse 
in three dimensions. Using holographic microscopy, 
Fung and co-​workers imaged the 3D motion of pairs of 
interacting colloidal particles with high temporal reso-
lution. They resolved the translational, rotational and 
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vibrational motion of the particles — and their inter-
action potential — by fitting generative models that 
account for scattering from multiple spherical particles, 
including near-​field and far-​field couplings between the 
scattered fields24,104. Perry et al.105 used a similar approach 
to infer the 3D dynamics of self-​assembled colloidal clus-
ters as they transitioned between free-​energy minima 
(Fig. 5b). The structure and dynamics of these systems 
can give insights into the first stages of crystal growth 
and the mechanisms of self-​assembly in colloidal sys-
tems. The precision of this measurement was sufficient 
to resolve transitions between two free-​energy minima 
for a six-​particle cluster, which was not possible with 
wide-​field or confocal optical microscopy.

Microrheology and stress measurements. Measurements 
of colloidal dynamics not only can reveal information 
about the physics of interacting systems but can also 
reveal information about materials in which colloidal 
particles are embedded. In microrheology, for exam-
ple, one infers the viscoelastic properties of a material 
by measuring the Brownian motion of embedded tracer 
particles106. In traction-​force microscopy, one infers the 
forces exerted by living cells by measuring the motion of 
particles embedded in an elastic substrate that deforms 
as the cells move on it107. In both cases, one needs to 
detect small displacements of the particles. Typically, a 
confocal or a standard wide-​field optical microscope is 
used, but a holographic microscope has advantages.

Hologram of E. coli bacterium 
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Fig. 5 | Motion and tracking. a | A colloidal particle approaching and 
breaching an interface between two fluids (left). Plot showing the position 
of a particle before and after the breach (middle). The high-​precision 
tracking of holographic microscopy shows that the particles relax 
logarithmically in time to equilibrium (right). Each curve corresponds to a 
measurement of a single particle. b | Fitting a generative model to 
holograms of a six-​particle cluster of interacting spherical particles reveals 
transitions between states. The raw hologram is shown alongside the 
best-​fit hologram (left). The results of the fits quantify the evolution of  
the cluster structure, represented by the second moment of the mass 

distribution. The full structures are shown as ball-​and-​stick models for four 
time points highlighted in red. c | Hologram of a single Escherichia coli 
bacterium (left) shows asymmetry in the fringes. Fitting a generative model 
of a sphero-​cylinder (middle) to this hologram yields estimates of the 
orientation and position of the bacterium as it swims. The high positional 
and angular precision reveal a helical wobble, clearly distinct from Brownian 
motion, in the swimming pattern, shown in the 3D plot (right). Part a 
adapted from ref.35, Springer Nature Limited. Part b adapted with 
permission from ref.105, RSC. Part c adapted with permission from ref.114, 
Optica Publishing Group.

Brownian motion
The random motion of particles 
suspended in a medium due to 
collisions with the surrounding 
molecules.

10 | Article citation ID:            (2022) 2:83 	 www.nature.com/nrmp

P r i m e r

0123456789();: 



Microrheological measurements benefit from 
the higher precision of the holographic microscope. 
Modelling and fitting a time series of holograms reveals 
the motion of tracer particles with nanometre-​scale pre-
cision. The diffusion coefficient24,104,108 of the particles 
and the viscoelastic properties of the medium can then 
be inferred from these 3D motion data. Cheong et al.69 
used this approach to precisely measure the complex  
viscoelastic moduli of polysaccharide gels, obtaining 
accurate measurements in micrometre-​scale samples 
without mechanical loading.

Traction-​force measurements benefit from the depth 
of field of the holographic microscope. Makarchuk 
et al.109 obtained the full 3D displacement map of tracer 
particles without scanning the focus of the microscope. 
They also measured the displacements to nanometre- 
scale precision. Although their technique did not use 
a generative model, it did involve directly analysing 
the hologram fringes to measure the forces exerted  
by colorectal cancer cells. The application of holo
graphy to traction-​force microscopy could enable both  
higher time resolution and characterization of forces on 
stiffer substrates, where the embedded particle motion 
is subtler.

Microorganisms and organelles. Holographic micro
scopy can also measure the properties and motion of bio-
logical systems. Fluorescence microscopy is commonly  
used for such systems because fluorescent labelling offers 
excellent contrast for the object of interest. But labels 
can also interfere with biological systems. Furthermore, 
photobleaching limits the number of detected photons 
and, hence, the duration of experiments110. Because 
holographic microscopy is based on scattering, the num-
ber of photons that can be detected is unlimited. Instead, 
the precision and speed are limited by the scattering 
strength of the sample. Biological systems tend to scatter 
weakly because their refractive indices are usually close 
to the index of water (1.33). The refractive indices of 
living cells, for instance, are around 1.38 or smaller111,112.

However, even weakly scattering microorganisms 
such as Escherichia coli can be seen under the holo-
graphic microscope. The small scattering cross section 
of an individual E. coli bacterium — which is about 2 μm 
long and has a refractive index of 1.388 (ref.113) — makes 
it difficult to see in a bright-​field optical microscope. 
Wang et al.114 were able to use holographic microscopy 
to capture the 3D swimming motion of these bacteria, 
including its tumbling, as shown in Fig. 5c. To obtain 
this information, they first modelled a bacterium as a 
homogeneous sphero-​cylinder. They then fit a gener-
ative model of scattering from a sphero-​cylinder to the  
data. This technique allowed them to measure both  
the position and the orientation of individual bacteria 
as a function of time. Using the high acquisition speed 
of the microscope, they resolved even the wobble of the 
bacterium during its run and tumble motion, as shown 
in Fig. 5c.

Holographic microscopes can also image vesicles, 
another class of weakly scattering systems that are bio-
logically important. Vesicles are enclosed lipid bilay-
ers that serve as models for organelles. They are used 

to deliver drugs115, study the origins of life116 or create 
artificial cells117,118. In these applications, the solute load-
ing of the vesicle and its motion must be tracked over 
time. This is a non-​trivial task because the bilayer is thin 
(about 5 nm). Consequently, the vesicle has a small scat-
tering cross section119. But when the vesicle is filled with, 
for example, a sugar solution, its scattering cross section 
increases, and interference fringes become visible under 
the holographic microscope, as shown in Fig. 6a. One can 
fit a generative model for a core–shell spherical particle 
to holograms of such filled vesicles — where the core is 
the filling solution and the shell is the thin outer layer 
of lipids. The fit reveals the vesicle’s refractive index and 
size, which can be used to quantify vesicle loading120.

Detection of molecules. Macromolecules, such as 
enzymes or proteins, are too small to see with a typical 
optical microscope because they do not scatter enough 
light. One can detect them by fluorescently labelling 
them and measuring their fluorescence when they bind 
to a functionalized bead. As in other fluorescent meas-
urements, labelling adds a step to the detection process, 
and labels can interfere with binding121,122.

Holographic microscopy offers an alternative 
approach that does not require fluorescent labelling. 
As in the fluorescence assay, one first functionalizes 
micrometre-​scale probe beads with surface groups that 
bind specifically to targets of interest, such as virus parti-
cles, antibodies or other proteins. One then records holo
grams of individual particles and fits these holograms 
with an effective-​sphere generative model. Fitting reveals 
binding-​induced changes in the inferred parameters123. 
The observed shift in effective diameter, for example, can 
be related to the coverage of bound targets.

This approach allows both rapid fitting and high 
sensitivity. When the molecules bind, they increase the 
effective diameter of the beads by a few nanometres, a 
difference that the holographic microscope can detect124. 
The resulting fits are precise enough to isolate changes 
in population distributions as the target molecules 
bind, enabling applications such as fluorescence-​free 
immunoassays125,126, as shown in Fig. 6b,c.

The validity of the effective-​medium approach has 
been assessed in simulations based on the discrete-​dipole 
approximation23,25,26,127. This approximation treats an 
inhomogeneous object as a set of point dipoles and 
allows computation of the scattered field of arbitrarily 
shaped objects. These simulations also show that one 
should use a low-​index material for the probe bead, rel-
ative to the refractive index of the molecular coatings, 
to observe the greatest shift in effective diameter after 
binding. Future experiments might therefore employ a 
silica probe bead, with refractive index n ≈ 1 4p . , instead 
of polystyrene, with np = 1.6.

Characterizing industrial dispersions. For many appli-
cations involving industrial dispersions, evaluating the 
efficacy and safety of the product requires detecting and 
differentiating multiple species of particulate contam-
inates and measuring their relative concentrations in 
dispersion. Hologram microscopy combined with the 
effective-​sphere analysis approach is especially well suited 
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to such applications. This method can analyse multiple 
particle species in wastewater or industrial slurries with 
high throughput66,70,75. In these applications, contaminants 
or large aggregates appear as outliers in the continuous, 
real-​time analysis of particle size and composition.

This method also has applications in the monitor-
ing and development of biopharmaceuticals. The active 

ingredients of these complex medicines are proteins 
that can aggregate, compromising the medicine’s effec-
tiveness and, potentially, causing harmful immune 
response. Winters et al.66 used holographic microscopy 
and an effective-​sphere model to successfully differenti-
ate multiple components of a model biopharmaceutical 
formulation, including silicone–oil emulsion droplets, 
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fatty-​acid clusters and potentially dangerous protein 
aggregates. Although many of these populations have a 
wide polydispersity in size, they can be distinguished by 
their common refractive index, indicating their similar 
composition. Characterizing the particles’ size and com-
position differentiates the populations of these different 
species with high throughput and allows their con-
centrations to be measured accurately. Monitoring the 
concentration and composition of particles dispersed in 
biopharmaceutical products is useful for guiding prod-
uct formulation, performing quality assurance during 
manufacturing and assessing product stability.

Reproducibility and data deposition
Reproducible, quantitative analysis with holographic 
microscopy requires recording and disclosing experi-
mental metadata, storing large data sets and reporting 
the prior probabilities and techniques used in the analy-
sis. The metadata are essential for interpreting recorded 
holograms. Metadata include both laser settings — such 
as wavelength, polarization and intensity — and imaging 
settings — such as pixel spacing, frame rate and expo-
sure time. To determine the pixel spacing, we image a 
graticule, and then divide the distance between mark-
ings by the number of pixels spanning that distance. We 
recommend recording all metadata in the same file as  
the hologram and maintaining these metadata through-
out hologram processing and analysis. Both HDF5 and 
TIFF files support storing metadata alongside data.

Some video recording formats are unsuitable for 
quantitative holographic imaging because they use 
lossy encoding to reduce file size. Lossy formats introduce 
artefacts into recorded images that can alter extracted 
results. The data should instead be saved as an uncom-
pressed video or in a format that uses lossless compression, 
such as HDF5 or TIFF.

To store a time series of recorded holograms, which has 
a size typically in the order of gigabytes, we recommend 
using standard, non-​proprietary formats such as HDF5. 
HDF5 has several advantageous features for holography: 
it is designed for large data sets, it can store data in a com-
pressed format and implementations such as the h5py 
Python package enable HDF5 files to be loaded piecewise, 
so that they do not consume all of the computer’s RAM.

Equally important to experimental metadata are 
parameters associated with hologram analysis. It is 
essential to disclose all assumptions, including the gen-
erative model and the prior probabilities, which are 
probability distributions in a Bayesian analysis but could 
also take the form of bounds placed on parameters. 
Algorithmic parameters should also be disclosed, such 
as the convergence criteria for non-​linear least-​squares 
fitting, the number of chains for MCMC sampling or  
the number of temperatures for parallel tempered 
MCMC sampling. In a machine-​learning framework, the 
underlying algorithm architecture and the training data 
should be reported. One can disclose all of this infor-
mation by creating public repositories for both data and 
analysis code.

Limitations and optimizations
Limits on the information that can be inferred from 
holograms are both physical and practical. The physi-
cal limitations do not depend on the analysis technique 
used. They are based on how much information is pres-
ent in the hologram. For example, when the particle 
approaches within roughly 5 μm of the focal plane of 
the objective, the fringes in its hologram become too 
finely spaced for the camera to resolve37,77. Conversely, 
when the particle moves too far from the focal plane, its 
fringes become increasingly faint and are obscured by 
image noise. Even under ideal imaging conditions, some 
combinations of particle parameters produce nearly 
indistinguishable holograms, which can lead to unrelia-
ble parameter estimation128. Furthermore, weakly scat-
tering objects introduce degeneracies in the generative 
model, making it difficult to determine, for example, the 
size and refractive index of the object independently. In 
these cases, a Bayesian inference approach with a genera-
tive model will report appropriately larger uncertainties. 
Finally, the presence of many objects in the specimen 
can make it more difficult to extract information from 
the hologram, because fringes from other objects dis-
rupt the fringes of interest. Machine-​learning methods 
can be used to isolate clean holograms of the object of 
interest129.

Generative modelling. The main practical limitation 
of the generative modelling approach is that one must 
know what one is looking at before modelling it, a 
limitation not faced by reconstruction-​based analyses. 
More specifically, the generative model must accu-
rately describe the shape, structure and composition 
of the specimen. It must also accurately describe how 
its hologram is formed. Ignoring physical effects, such 
as strong aberrations, leads to systematic characteriza-
tion errors37. Additional parameters in the model, such 
as the field rescaling parameter α, can improve the fit 
but may be difficult to interpret. Furthermore, even in 
the most complex models, the inferred parameters can 
depend on the distance between the object and the focal 
plane. Martin et al.37 found that when the particle was 
closer than about 10 μm to the focal plane, the inferred 
refractive index of the particle had a variation of 6%, 
whereas the inferred diameter had a variation as high  
as 20%. Such results may indicate that the model does not  

Polydispersity
The distribution of sizes within 
a sample.

Graticule
A set of parallel lines with 
known spacing used for 
measuring scale.

Lossy encoding
Methods of compressing  
or transferring data that 
approximate or down-​sample 
the data.

Fig. 6 | Property estimation and characterization. a | Hologram of a vesicle encapsu
lating ~500 mM sucrose, alongside the best-​fit hologram from a core–shell model and  
a 3D rendering of the best-​fit vesicle, shown with a cut-​away of the enclosed fluid.  
b | Hologram of a spherical bead that binds target molecules, alongside a best-​fit hologram 
from an effective-​sphere model, which treats the substrate bead and molecular layers  
as a single homogeneous sphere. The fit defines the effective diameter and effective 
refractive index (right). c | Results from the effective-​sphere analysis for avidin binding  
to biotinylated polystyrene spheres. Plots show the distributions of inferred particle  
diameters dp( )ρ  and refractive indexes np( )ρ  from control beads (blue), probe beads after 
binding (red) and differences. Binding causes a statistically significant shift in ( )ρ dp  in  
the order of a few nanometres. d | Inferred parameters for a heterogeneous, four-​particle 
mixture from a generative modelling approach (left), a machine-​learning approach  
(middle) and a hybrid approach (right). The results show how well each method differen-
tiates components of the mixture, which contains two sizes each of polystyrene and silica 
spheres. Ovals mark 99% confidence intervals of the generative modelling results. Colour 
denotes the relative probability density of the parameters, ( , )P d np p . Part a adapted with 
permission from ref.120, A. Wang. Parts b and c adapted with permission from ref.125, 
Optica Publishing Group. Part d adapted with permission from ref.50, ACS.
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account for some physical effects. To overcome these 
limitations, future work should focus on more descriptive  
and accurate generative models.

Another practical limitation is the computational 
cost of fitting. Fitting the more complex generative mod-
els, such as those describing the scattering from a clus-
ter of many spherical particles, can take hours of CPU 
(central processing unit) time for a single hologram. By 
contrast, the hologram of a single sphere can be com-
puted in under a millisecond on a desktop computer. 
The computational cost of detailed analysis may be pro-
hibitive for certain experiments, such as those involving 
long time series or high throughput.

New developments in computing and inference could 
mitigate these issues. For example, algorithms such as 
automatic differentiation130,131, variational inference132 
and Hamiltonian Monte Carlo81 can accelerate fitting 
models with large numbers of parameters. Additionally, 
graphics processing unit (GPU) and tensor processing 
unit (TPU) computing frameworks can parallelize the 
fitting of highly complex models to time series133.

An alternative is to develop simpler models rather 
than more complex ones. The effective-​sphere model is 
an example of a model that makes simplifying yet accu-
rate physical approximations. This approach can reduce 
the burden of specifying the detailed shape and struc-
ture of the object, and can sharply reduce the computa-
tional cost. The challenge is to determine the appropriate 
approximation for the problem. To this end, one can test 
the approximations by running full scattering calculations 
using tools such as the discrete-​dipole method26.

Machine learning. Although machine-​learning algo-
rithms can perform more robustly over a wider param-
eter space than conventional algorithms, they can be 
inaccurate when their inputs differ too drastically from 
their training data. Imprecision in the localization algo-
rithm, which estimates the position and extents of holo
grams, can also propagate uncertainty into parameters 
such as size and axial position50.

The machine-​learning approach is also limited by 
computational speed, although in a different way from 
the generative modelling approach. In particular, analys-
ing data is fast, but training can be slow because many 
holograms must be generated to span the parameter 
space. Altman and Grier50 achieved reliable results with 
a training set of 104 images, but in the theoretical limit 
109 images would be required to achieve the parts per 
thousand precision of a generative modelling approach. 
Because the training data can be generated and labelled 
automatically, achieving high-​precision classification 
is not an intractable problem for spherical specimens. 
Advances in network architecture and training proto-
cols for high-​precision tracking and characterization 
of spherical particles may soon be practical even with 
modestly sized training sets. But for non-​spherical spec-
imens, which include additional degrees of freedom 
such as shape and orientation, it may be impractical to 
generate and process enough training data for accurate 
characterization.

Using synthetic data to train machine-​learning mod-
els has some disadvantages. Experimental artefacts, such 

as pattern noise in the camera, can significantly compro-
mise accuracy. To mitigate this problem, one can either 
improve the experimental design or modify the models 
used to generate the training data. For example, one can 
measure the camera noise and incorporate it into the 
generated holograms90, or generate the training data 
using models that more accurately describe the artefacts 
of the experimental system.

Hybrid approaches. A hybrid approach can, in prin-
ciple, overcome the limitations of both the generative 
modelling and machine-​learning approach. It removes 
the need for human input or prior knowledge, while 
benefiting from the speed of machine learning and 
precision of fitting. Nevertheless, the hybrid approach 
comes with caveats. First, it remains computationally 
expensive because the generated training data must span 
the parameter space. Second, fitting the model requires 
calculating many holograms, although we expect fitting 
times to be reduced if the machine-​learning stage pro-
vides a good initial guess. Third, any fundamental inac-
curacies and limitations in the generative model affect 
the analysis in both stages. In the machine-​learning 
stage, these inaccuracies affect the training data and, 
therefore, the parameter estimates. The inaccuracies in 
these estimates can propagate to the results of the fit-
ting stage, as the accuracy of the fit can depend on the 
starting point in parameter space.

More general limitations. It is difficult to know whether 
the model-​based approach and in-​line experimental 
geometry will be effective for a specimen that differs 
from the previous examples, or whether a different 
analysis or experimental technique could reveal more 
information. We cannot give specific information on the 
ranges of specimen concentration, size, shape or struc-
ture for which the approach will yield useful results. New 
studies are needed to probe the physical and practical 
limitations of analysing more complex specimens.

For those interested in using the approach but unsure 
whether it will work on a particular specimen, our advice 
is to try it. The in-​line geometry is straightforward to 
set up, and open-​source software for generative model-
ling83 and machine learning50 makes it easy to apply the 
analysis methods.

Outlook
Since its development in the 1940s, holographic micro
scopy has been repeatedly revitalized by technological 
developments. The invention of the laser simplified 
implementation134; the development of digital cameras 
enabled digital reconstruction135; and the advent of com-
puters powerful enough to compute scattering solutions 
of microscopic objects enabled direct analysis of holo-
grams136,137. Recent developments in statistical infer-
ence and machine learning enabled the model-​based 
approaches and precise measurements discussed in this 
Primer.

The future of model-​based analysis depends on con-
tinued advances in inference and computation. Removing 
limitations, such as the variation of parameter esti-
mates with defocus, demands more physically accurate 
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generative models. These models must also be more 
computationally efficient. Currently, it takes days of CPU 
time to fit a complex generative model to a hologram  
of a two-​sphere cluster if the model includes the effects of  
a lens78. Although processing power will likely increase, 
there is still a need for numerical and algorithmic opti-
mization. Real-​time analysis of holograms requires infer-
ence algorithms that are more efficient. These algorithms 
must also be resilient to the complications of real experi-
mental systems, such as variations in brightness and loss 
of fringe information near the focal plane.

Machine-​learning techniques are poised to meet 
many of these challenges. CNNs have quantified the 
properties of microscopic objects from real holograms 
taken under various experimental conditions, at speeds 
nearly 100 times faster than conventional inference-​based 
techniques. However, these property estimates are not as 
precise as those obtained with a fitting approach, and 
they lack the uncertainty estimates provided by MCMC 
sampling. Furthermore, estimating properties such as the 
shape, structure and orientation of more complex spec-
imens requires algorithms trained with a large amount 
of data. Machine-​learning approaches rely on generative 
models to produce these training data. The future of 
the field will likely depend on the development of both 
approaches in parallel.

We would go further; we think the future of holo-
graphic microscopy depends not only on the parallel 
development of generative modelling and machine 
learning but on their integration. We envision a micro-
scope that would send its holograms directly to a sys-
tem that could guess what kind of objects made them, 
analyse the holograms and report any parameters and 
uncertainties that the researcher specifies. The specimen 
might be a living eukaryotic cell, and the objects might 
be its organelles. Behind the scenes, a hybrid approach 
would be at work. A machine-​learning module would 
determine the number, shapes and structures of objects 

that made the hologram; estimate the properties of these 
objects; and select a generative model for each. A fitting 
module would then report precise estimates and mar-
ginalized uncertainties on parameters of interest, using 
the results from the machine-​learning module as initial 
estimates.

The development of these new algorithms could be 
synergistic with experimental design. In the broad field 
of quantitative phase microscopy14,138–140, researchers lev-
erage various experimental approaches — off-​axis beam 
geometries, phase-​shifting elements, coherence control 
and multi-​wavelength apparatus, among others — to 
acquire more information and more sensitive measure-
ments of complex specimens. Meanwhile, interferometric 
scattering techniques have pushed the detection limit of 
holographic microscopy to the single-​molecule scale141,142. 
Generative models are starting to appear for these tech-
niques143. The development of generative modelling 
and machine-​learning approaches could drive further 
advances in experimental techniques, and vice versa.

This vision is not limited to holographic microscopy; 
it is a vision for where microscopy in general may be 
headed. As we noted in the Introduction, a hologram 
is not easy for the human eye to interpret. It is difficult 
to visually recognize even a specimen’s shape from its 
hologram, let alone its size or orientation. But the inter-
ference fringes that make the hologram impenetrable to 
human vision contain a wealth of information about the 
specimen. That information is most easily extracted and 
quantified by an algorithm. The same principle can be 
applied to any microscopy technique. By removing the 
need for humans to directly interpret the image, we can 
design microscopes that maximize the amount of infor-
mation contained in the image. Although the resulting 
images may not appeal to the eye, their true appeal lies 
in what they reveal about the specimen.

Published online xx xx xxxx

1.	 Sheng, J., Malkiel, E. & Katz, J. Digital holographic 
microscope for measuring three-​dimensional particle 
distributions and motions. Appl. Opt. 45, 3893–3901 
(2006).

2.	 Gabor, D. A new microscopic principle. Nature 161, 
777–778 (1948).

3.	 Gabor, D. & Bragg, W. L. Microscopy by reconstructed 
wave-​fronts. P. Roy. Soc. Lond. A Mat. 197, 454–487 
(1949).  
Together with Gabor (1948), this paper 
demonstrates that it is possible to optically 
reconstruct a 3D representation of a specimen 
from its recorded hologram, a finding that 
launched the field of holographic microscopy.

4.	 Xu, W., Jericho, M. H., Meinertzhagen, I. A.  
& Kreuzer, H. J. Digital in-​line holography for 
biological applications. Proc. Natl Acad. Sci. USA  
98, 11301–11305 (2001).

5.	 Xu, W., Jericho, M. H., Kreuzer, H. J. & 
Meinertzhagen, I. A. Tracking particles in four 
dimensions with in-​line holographic microscopy.  
Opt. Lett. 28, 164–166 (2003).

6.	 Berg, M. J. Tutorial: Aerosol characterization with 
digital in-​line holography. J. Aerosol Sci. 165, 106023 
(2022).

7.	 Kim, M. K. Principles and techniques of digital 
holographic microscopy. SPIE Rev. 1, 018005 (2010).

8.	 Jericho, S. K., Garcia-​Sucerquia, J., Xu, W.,  
Jericho, M. H. & Kreuzer, H. J. Submersible digital  
in-​line holographic microscope. Rev. Sci. Instrum. 77, 
043706 (2006).

9.	 Garcia-​Sucerquia, J. et al. Digital in-​line holographic 
microscopy. Appl. Opt. 45, 836–850 (2006).

10.	 Bishara, W., Zhu, H. & Ozcan, A. Holographic opto-​
fluidic microscopy. Opt. Express 18, 27499–27510 
(2010).

11.	 Marquet, P. et al. Digital holographic microscopy:  
a noninvasive contrast imaging technique allowing 
quantitative visualization of living cells with 
subwavelength axial accuracy. Opt. Lett. 30,  
468–470 (2005).

12.	 Mölder, A. et al. Non-​invasive, label-​free cell counting 
and quantitative analysis of adherent cells using 
digital holography. J. Microsc. 232, 240–247  
(2008).

13.	 Kemper, B. & Bally, G. V. Digital holographic 
microscopy for live cell applications and  
technical inspection. Appl. Opt. 47, A52–A61  
(2008).

14.	 Park, Y., Depeursinge, C. & Popescu, G. Quantitative 
phase imaging in biomedicine. Nat. Photonics 12, 
578–589 (2018).

15.	 Barty, A., Nugent, K. A., Roberts, A. & Paganin, D. 
Quantitative phase tomography. Opt. Comm. 175, 
329–336 (2000).

16.	 Popescu, G. Quantitative Phase Imaging of Cells and 
Tissues (McGraw-​Hill Education, 2011).

17.	 Popescu, G. et al. Imaging red blood cell dynamics  
by quantitative phase microscopy. Blood Cell Mol. Dis. 
41, 10–16 (2008).

18.	 Marquet, P., Depeursinge, C. & Magistretti, P. J. 
Review of quantitative phase-​digital holographic 
microscopy: promising novel imaging technique to 
resolve neuronal network activity and identify cellular 
biomarkers of psychiatric disorders. Neurophotonics 
1, 020901 (2014).

19.	 Mie, G. Beiträge zur Optik trüber Medien, speziell 
kolloidaler Metallösungen [German]. Ann. Phys. 330, 
377–445 (1908).

20.	 Ovryn, B. & Izen, S. H. Imaging of transparent spheres 
through a planar interface using a high-​numerical-
aperture optical microscope. JOSA 17, 1202–1213 
(2000).  
The authors fit a generative model based on 
Lorenz–Mie theory to a recorded hologram to 
determine the properties of a microscopic particle.

21.	 Lee, S.-H. et al. Characterizing and tracking single 
colloidal particles with video holographic microscopy. 
Opt. Express 15, 18275–18282 (2007).  
This paper presents a straightforward generative 
model for hologram formation from a simple 
sphere, which has become the basis for many  
later studies on various systems.

22.	 Wang, A., Rogers, W. B. & Manoharan, V. N. Effects of 
contact-​line pinning on the adsorption of nonspherical 
colloids at liquid interfaces. Phys. Rev. Lett. 119, 
108004 (2017).

23.	 Wang, A. et al. Using the discrete dipole approximation 
and holographic microscopy to measure rotational 
dynamics of non-​spherical colloidal particles. J. Quant. 
Spectrosc. Radiat. Transf. 146, 499–509 (2014).

24.	 Fung, J. et al. Measuring translational, rotational,  
and vibrational dynamics in colloids with digital 
holographic microscopy. Opt. Express 19, 8051 
(2011).

25.	 Yurkin, M. A. & Hoekstra, A. G. The discrete dipole 
approximation: an overview and recent developments. 
J. Quant. Spectrosc. Radiat. Transf. 106, 558–589 
(2007).

	  15NAture RevIews | MetHoDs Primers | Article citation ID:            (2022) 2:83 

P r i m e r

0123456789();: 



26.	 Yurkin, M. A. & Hoekstra, A. G. The discrete-​dipole-
approximation code ADDA: capabilities and known 
limitations. J. Quant. Spectrosc. Radiat. Transf. 112, 
2234–2247 (2011).

27.	 Pu, Y. & Meng, H. Intrinsic aberrations due to Mie 
scattering in particle holography. J. Opt. Soc. Am. A 
20, 1920 (2003).

28.	 Dulin, D., Barland, S., Hachair, X. & Pedaci, F. Efficient 
illumination for microsecond tracking microscopy. 
PLoS ONE 9, e107335 (2014).

29.	 Giuliano, C. B., Zhang, R. & Wilson, L. G. Digital inline 
holographic microscopy (DIHM) of weakly-​scattering 
subjects. J. Vis. Exp. 84, e50488 (2014).

30.	 Kanka, M., Riesenberg, R., Petruck, P. & Graulig, C. 
High resolution (NA = 0.8) in lensless in-​line 
holographic microscopy with glass sample carriers. 
Opt. Lett. 36, 3651–3653 (2011).

31.	 Garcia-​Sucerquia, J. Noise reduction in digital lensless 
holographic microscopy by engineering the light from 
a light-​emitting diode. Appl. Opt. 52, A232–A239 
(2013).

32.	 Hell, S., Reiner, G., Cremer, C. & Stelzer, E. H. K. 
Aberrations in confocal fluorescence microscopy 
induced by mismatches in refractive index. J. Microsc. 
169, 391–405 (1993).

33.	 Wu, Y. & Ozcan, A. Lensless digital holographic 
microscopy and its applications in biomedicine and 
environmental monitoring. Methods 136, 4–16 
(2018).

34.	 Deng, N.-N. et al. Simple and cheap microfluidic 
devices for the preparation of monodisperse 
emulsions. Lab. Chip 11, 3963–3969 (2011).

35.	 Kaz, D. M., McGorty, R., Mani, M., Brenner, M. P. & 
Manoharan, V. N. Physical ageing of the contact line 
on colloidal particles at liquid interfaces. Nat. Mater. 
11, 138–142 (2012).  
This application of a generative modelling 
approach demonstrates the usefulness of the 
method: the fast, precise measurements enabled 
by the approach reveal a previously indiscernible 
phenomenon.

36.	 Moyses, H. W., Krishnatreya, B. J. & Grier, D. G. 
Robustness of Lorenz–Mie microscopy against defects 
in illumination. Opt. Express 21, 5968 (2013).

37.	 Martin, C., Leahy, B. & Manoharan, V. N. Improving 
holographic particle characterization by modeling 
spherical aberration. Opt. Express 29, 18212 (2021).

38.	 Fung, J., Perry, R. W., Dimiduk, T. G. & Manoharan, V. N. 
Imaging multiple colloidal particles by fitting 
electromagnetic scattering solutions to digital 
holograms. J. Quant. Spectrosc. Radiat. Transf. 113, 
2482–2489 (2012).

39.	 Cheong, F. C. et al. Flow visualization and flow 
cytometry with holographic video microscopy.  
Opt. Express 17, 13071 (2009).

40.	 Dixon, L., Cheong, F. C. & Grier, D. G. Holographic 
particle-​streak velocimetry. Opt. Express 19,  
4393–4398 (2011).

41.	 Edelstein, A. D. et al. Advanced methods of microscope 
control using μManager software. J. Biol. Methods 1, 
e10 (2014).

42.	 Vercruysse, D. et al. Three-​part differential of 
unlabeled leukocytes with a compact lens-​free  
imaging flow cytometer. Lab Chip 15, 1123–1132 
(2015).

43.	 Dimiduk, T. G. et al. A simple, inexpensive holographic 
microscope. in Biomedical Optics and 3-D Imaging, 
OSA Technical Digest (CD) JMA38 (Optica, 2010).

44.	 Fung, J. Measuring the 3D Dynamics of Multiple 
Colloidal Particles with Digital Holographic 
Microscopy. PhD Thesis, Harvard Univ. (2013).

45.	 Moreno, D., Santoyo, F. M., Guerrero, J. A. &  
Funes-​Gallanzi, M. Particle positioning from charge-​
coupled device images by the generalized Lorenz–Mie 
theory and comparison with experiment. Appl. Opt. 
39, 5117–5124 (2000).

46.	 Denis, L., Fournier, C., Fournel, T., Ducottet, C. & 
Jeulin, D. Direct extraction of the mean particle size 
from a digital hologram. Appl. Opt. 45, 944–952 
(2006).

47.	 Guerrero-​Viramontes, J. A., Moreno-​Hernández, D., 
Mendoza-​Santoyo, F. & Funes-​Gallanzi, M. 3D particle 
positioning from CCD images using the generalized 
Lorenz–Mie and Huygens–Fresnel theories. Meas. Sci. 
Technol. 17, 2328–2334 (2006).

48.	 Yevick, A., Hannel, M. & Grier, D. G. Machine-​learning 
approach to holographic particle characterization. 
Opt. Express 22, 26884 (2014).  
This paper is one of the first applications of 
machine learning to hologram analysis, and 
demonstrates the increase in speed of analysis  
that is possible.

49.	 Hannel, M. D., Abdulali, A., O’Brien, M. & Grier, D. G. 
Machine-​learning techniques for fast and accurate 
feature localization in holograms of colloidal particles. 
Opt. Express 26, 15221 (2018).

50.	 Altman, L. E. & Grier, D. G. CATCH: characterizing  
and tracking colloids holographically using deep 
neural networks. J. Phys. Chem. B 124, 1602–1610 
(2020).  
This paper demonstrates a fully integrated pipeline 
for analysis of holograms, with improved 
automation and precision made possible by 
combining machine learning with fitting.

51.	 Hannel, M., Middleton, C. & Grier, D. G. Holographic 
characterization of imperfect colloidal spheres. Appl. 
Phys. Lett. 107, 141905 (2015).

52.	 Duda, R. O. & Hart, P. E. Use of the Hough 
transformation to detect lines and curves in pictures. 
Commun. ACM 15, 11–15 (1972).

53.	 Ballard, D. H. Generalizing the Hough transform  
to detect arbitrary shapes. Pattern Recogn. 13,  
111–122 (1981).

54.	 Dimiduk, T. G., Perry, R. W., Fung, J. & Manoharan, V. N. 
Random-​subset fitting of digital holograms for fast 
three-​dimensional particle tracking [invited]. Appl. Opt. 
53, G177–G183 (2014).

55.	 Dimiduk, T. G. & Manoharan, V. N. Bayesian approach 
to analyzing holograms of colloidal particles. Opt. Express 
24, 24045 (2016).  
This work demonstrates the use of a Bayesian 
inference framework for hologram analysis, which 
has lent several advantages over non-​linear  
least-squares fitting routines, including the formal 
integration of prior information and MCMC 
calculation of the posterior over parameters.

56.	 Moré, J. J. in Numerical Analysis (ed. Watson, G. A.) 
105–116 (Springer, 1978).

57.	 Cheong, F. C., Krishnatreya, B. J. & Grier, D. G. 
Strategies for three-​dimensional particle tracking  
with holographic video microscopy. Opt. Express 18, 
13563 (2010).

58.	 Krishnatreya, B. J. et al. Measuring Boltzmann’s 
constant through holographic video microscopy  
of a single colloidal sphere. Am. J. Phys. 82, 23–31 
(2014).

59.	 Wang, A., McGorty, R., Kaz, D. M. & Manoharan, V. N. 
Contact-​line pinning controls how quickly colloidal 
particles equilibrate with liquid interfaces. Soft Matter 
12, 8958–8967 (2016).

60.	 Wang, A. et al. Before the breach: interactions between 
colloidal particles and liquid interfaces at nanoscale 
separations. Phys. Rev. E 100, 042605 (2019).

61.	 Roichman, Y., Sun, B., Stolarski, A. & Grier, D. G. 
Influence of nonconservative optical forces on the 
dynamics of optically trapped colloidal spheres: the 
fountain of probability. Phys. Rev. Lett. 101, 128301 
(2008).

62.	 Sun, B., Lin, J., Darby, E., Grosberg, A. Y. & Grier, D. G. 
Brownian vortexes. Phys. Rev. E 80, 010401 (2009).

63.	 O’Brien, M. J. & Grier, D. G. Above and beyond: 
holographic tracking of axial displacements in 
holographic optical tweezers. Opt. Express 27, 25375 
(2019).

64.	 Xiao, K. & Grier, D. G. Sorting colloidal particles into 
multiple channels with optical forces: prismatic optical 
fractionation. Phys. Rev. E 82, 051407 (2010).

65.	 Xiao, K. & Grier, D. G. Multidimensional optical 
fractionation of colloidal particles with holographic 
verification. Phys. Rev. Lett. 104, 028302 (2010).

66.	 Winters, A. et al. Quantitative differentiation of protein 
aggregates from other subvisible particles in viscous 
mixtures through holographic characterization.  
J. Pharm. Sci. 109, 2405–2412 (2020).

67.	 Wang, C., Shpaisman, H., Hollingsworth, A. D. &  
Grier, D. G. Celebrating soft matter’s 10th anniversary: 
monitoring colloidal growth with holographic 
microscopy. Soft Matter 11, 1062–1066 (2015).

68.	 Shpaisman, H., Jyoti Krishnatreya, B. & Grier, D. G. 
Holographic microrefractometer. Appl. Phys. Lett. 
101, 091102 (2012).

69.	 Cheong, F. C., Duarte, S., Lee, S.-H. & Grier, D. G. 
Holographic microrheology of polysaccharides from 
Streptococcus mutans biofilms. Rheol. Acta 48,  
109–115 (2009).

70.	 Wang, C. et al. Holographic characterization of protein 
aggregates. J. Pharm. Sci. 105, 1074–1085 (2016).

71.	 Fung, J. & Hoang, S. Computational assessment of  
an effective-​sphere model for characterizing colloidal 
fractal aggregates with holographic microscopy. J. Quant. 
Spectrosc. Radiat. Transf. 236, 106591 (2019).  
This work demonstrates the range of validity of the 
effective-​sphere model in hologram analysis, used 
widely in industrial applications.

72.	 Wang, C. et al. Holographic characterization  
of colloidal fractal aggregates. Soft Matter 12,  
8774–8780 (2016).

73.	 Altman, L. E., Quddus, R., Cheong, F. C. & Grier, D. G. 
Holographic characterization and tracking of colloidal 
dimers in the effective-​sphere approximation. Soft Matter 
17, 2695–2703 (2021).

74.	 Philips, L. A. et al. Holographic characterization of 
contaminants in water: differentiation of suspended 
particles in heterogeneous dispersions. Water Res. 
122, 431–439 (2017).

75.	 Cheong, F. C. et al. Holographic characterization of 
colloidal particles in turbid media. Appl. Phys. Lett. 
111, 153702 (2017).

76.	 Mackowski, D. W. & Mishchenko, M. I. Calculation of 
the T matrix and the scattering matrix for ensembles 
of spheres. J. Opt. Soc. Am. A 13, 2266–2278 (1996).

77.	 Leahy, B. et al. Large depth-​of-field tracking of 
colloidal spheres in holographic microscopy by 
modeling the objective lens. Opt. Express 28,  
1061–1075 (2020).

78.	 Alexander, R., Leahy, B. & Manoharan, V. N. Precise 
measurements in digital holographic microscopy  
by modeling the optical train. J. Appl. Phys. 128, 
060902 (2020).  
This review highlights the historic development of 
the generative modelling approach to holograms 
(the only review to our knowledge that does so)  
and discusses the current abilities and limitations 
of existing generative models.

79.	 Geyer, C. J. in Handbook of Markov Chain Monte 
Carlo (eds Brooks, S., Gelman, A., Jones, G. L. & 
Meng, X.-L.) 3–48 (Chapman & Hall/CRC, 2011).

80.	 Hansen, N. & Ostermeier, A. Adapting arbitrary 
normal mutation distributions in evolution strategies: 
the covariance matrix adaptation. in Proc. IEEE Int. 
Conf. Evolutionary Computation 312–317 https:// 
doi.org/10.1109/ICEC.1996.542381 (1996).

81.	 Neal, R. M. in Handbook of Markov Chain Monte 
Carlo (eds. Brooks, S., Gelman, A, Jones, G L,  
& Meng, X L) 113–162 (Chapman & Hall/CRC 
Handbooks of Modern Statistical Methods, 2011).

82.	 Earl, D. J. & Deem, M. W. Parallel tempering: theory, 
applications, and new perspectives. Phys. Chem. 
Chem. Phys. 7, 3910–3916 (2005).

83.	 Barkley, S. et al. Holographic microscopy with Python 
and HoloPy. Comput. Sci. Eng. 22, 72–82 (2019).

84.	 Crocker, J. & Grier, D. Methods of digital video 
microscopy for colloidal studies. J. Colloid Interf. Sci. 
179, 298–310 (1996).

85.	 Krishnatreya, B. J. & Grier, D. G. Fast feature 
identification for holographic tracking: the orientation 
alignment transform. Opt. Express 22, 12773 (2014).

86.	 Parthasarathy, R. Rapid, accurate particle tracking by 
calculation of radial symmetry centers. Nat. Methods 
9, 724–726 (2012).

87.	 Rotskoff, G. M. & Vanden-​Eijnden, E. Trainability and 
accuracy of neural networks: an interacting particle 
system approach. Preprint at https://doi.org/10.48550/ 
arXiv.1805.00915 (2018).

88.	 Newby, J. M., Schaefer, A. M., Lee, P. T., Forest, M. G. 
& Lai, S. K. Convolutional neural networks automate 
detection for tracking of submicron-​scale particles  
in 2D and 3D. Proc. Natl Acad. Sci. USA 115,  
9026–9031 (2018).

89.	 Schneider, B., Dambre, J. & Bienstman, P. Fast particle 
characterization using digital holography and neural 
networks. Appl. Opt. 55, 133 (2016).

90.	 Klein, E. Structure and Dynamics of Colloidal Clusters. 
PhD Thesis, Harvard Univ. (2019).

91.	 Kingma, D. P. & Ba, J. Adam: a method for stochastic 
optimization. Preprint at https://doi.org/10.48550/
arXiv.1412.6980 (2014).

92.	 Bottou, L. in Proc. COMPSTAT’2010 (eds Lechevallier, Y. 
& Saporta, G.) 177–186 (Physica-​Verlag HD, 2010).

93.	 Glorot, X., Bordes, A. & Bengio, Y. in Proc. Fourteenth 
Int. Conf. Artificial Intelligence and Statistics Vol. 15 
(eds Gordon, G., Dunson, D. & Dudík, M.) 315–323 
(PMLR, 2011).

94.	 Redmon, J. & Farhadi, A. YOLOv3: an incremental 
improvement. Preprint at https://doi.org/10.48550/
arXiv.1804.02767 (2018).

95.	 Meng, G., Arkus, N., Brenner, M. P. & Manoharan, V. N. 
The free-​energy landscape of clusters of attractive 
hard spheres. Science 327, 560–563 (2010).

96.	 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J.  
& Wojna, Z. Rethinking the inception architecture  
for computer vision. in Proc. IEEE Conf. Computer 
Vision and Pattern Recognition (CVPR) 2818–2826 
(IEEE, 2016).

97.	 Pickering, S. U. Emulsions. J. Chem. Soc. Trans. 91, 
2001–2021 (1907).

16 | Article citation ID:            (2022) 2:83 	 www.nature.com/nrmp

P r i m e r

0123456789();: 

https://doi.org/10.1109/ICEC.1996.542381
https://doi.org/10.1109/ICEC.1996.542381
https://doi.org/10.48550/arXiv.1805.00915
https://doi.org/10.48550/arXiv.1805.00915
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.1804.02767


98.	 Xiao, J., Li, Y. & Huang, Q. Recent advances on  
food-​grade particles stabilized Pickering emulsions: 
fabrication, characterization and research trends. 
Trends Food Sci. Tech. 55, 48–60 (2016).

99.	 Yoon, K. Y. et al. Core flooding of complex nanoscale 
colloidal dispersions for enhanced oil recovery by 
in situ formation of stable oil-​in-water Pickering 
emulsions. Energ. Fuels 30, 2628–2635 (2016).

100.	Bhargava, A., Francis, A. V. & Biswas, A. K. Interfacial 
studies related to the recovery of mineral slimes in a 
water–hydrocarbon liquid-​collector system. J. Colloid 
Interf. Sci. 64, 214–227 (1978).

101.	Aveyard, R., Binks, B. P. & Clint, J. H. Emulsions 
stabilised solely by colloidal particles. Adv. Colloid 
Interfac. 100–102, 503–546 (2003).

102.	Dinsmore, A. D. et al. Colloidosomes: selectively 
permeable capsules composed of colloidal particles. 
Science 298, 1006–1009 (2002).

103.	Rahmani, A. M., Wang, A., Manoharan, V. N. & 
Colosqui, C. E. Colloidal particle adsorption at liquid 
interfaces: capillary driven dynamics and thermally 
activated kinetics. Soft Matter 12, 6365–6372 
(2016).

104.	 Fung, J. & Manoharan, V. N. Holographic measurements 
of anisotropic three-​dimensional diffusion of colloidal 
clusters. Phys. Rev. E 88, 020302 (2013).

105.	Perry, R. W., Meng, G., Dimiduk, T. G., Fung, J. & 
Manoharan, V. N. Real-​space studies of the structure 
and dynamics of self-​assembled colloidal clusters. 
Faraday Discuss. 159, 211–234 (2013).

106.	Zia, R. N. Active and passive microrheology: theory 
and simulation. Annu. Rev. Fluid Mech. 50, 371–405 
(2018).

107.	Style, R. W. et al. Traction force microscopy in physics 
and biology. Soft Matter 10, 4047–4055 (2014).

108.	Cheong, F. C. & Grier, D. G. Rotational and 
translational diffusion of copper oxide nanorods 
measured with holographic video microscopy.  
Opt. Express 18, 6555 (2010).

109.	Makarchuk, S., Beyer, N., Gaiddon, C., Grange, W.  
& Hébraud, P. Holographic traction force microscopy. 
Sci. Rep. 8, 3038 (2018).

110.	 Moerner, W. E. & Fromm, D. P. Methods of single-​
molecule fluorescence spectroscopy and microscopy. 
Rev. Sci. Instrum. 74, 3597–3619 (2003).

111.	 Steelman, Z. A., Eldridge, W. J., Weintraub, J. B.  
& Wax, A. Is the nuclear refractive index lower than 
cytoplasm? Validation of phase measurements  
and implications for light scattering technologies.  
J. Biophotonics 10, 1714–1722 (2017).

112.	Liu, P. Y. et al. Real-​time measurement of single 
bacterium’s refractive index using optofluidic 
immersion refractometry. Procedia Eng. 87, 356–359 
(2014).

113.	Molaei, M. & Sheng, J. Imaging bacterial 3D motion 
using digital in-​line holographic microscopy and 
correlation-​based de-​noising algorithm. Opt. Express 
22, 32119 (2014).

114.	Wang, A., Garmann, R. F. & Manoharan, V. N. Tracking 
E. coli runs and tumbles with scattering solutions and 
digital holographic microscopy. Opt. Express 24, 
23719–23725 (2016).

115.	Bozzuto, G. & Molinari, A. Liposomes as nanomedical 
devices. Int. J. Nanomed. 10, 975–999 (2015).

116.	Deamer, D. The role of lipid membranes in life’s origin. 
Life 7, 5 (2017).

117.	Schwille, P. & Diez, S. Synthetic biology of minimal 
systems. Crit. Rev. Biochem. Mol. 44, 223–242 
(2009).

118.	Spustova, K., Köksal, E. S., Ainla, A. & Gözen, I. 
Subcompartmentalization and pseudo-​division  
of model protocells. Small 17, 2005320 (2021).

119.	Wang, A., Chan Miller, C. & Szostak, J. W. Core-​shell 
modeling of light scattering by vesicles: effect of size, 
contents, and lamellarity. Biophys. J. 116, 659–669 
(2019).

120.	Tran, L. H. A. et al. Measuring vesicle loading with 
holographic microscopy. Preprint at https://doi.org/ 
10.48550/arXiv.2204.13068 (2022).

121.	Quinn, M. K. et al. How fluorescent labelling alters  
the solution behaviour of proteins. Phys. Chem.  
Chem. Phys. 17, 31177–31187 (2015).

122.	Hughes, L. D., Rawle, R. J. & Boxer, S. G. Choose your 
label wisely: water-​soluble fluorophores often interact 
with lipid bilayers. PLoS ONE 9, e87649 (2014).

123.	Markel, V. Introduction to the Maxwell Garnett 
approximation: tutorial. J. Opt. Soc. Am. A 33,  
1244–1256 (2016).

124.	Zagzag, Y., Soddu, M. F., Hollingsworth, A. D.  
& Grier, D. G. Holographic molecular binding assays. 
Sci. Rep. 10, 1932 (2020).

125.	Altman, L. E. & Grier, D. G. Interpreting holographic 
molecular binding assays with effective medium 
theory. Biomed. Opt. Express 11, 5225 (2020).

126.	Snyder, K., Quddus, R., Hollingsworth, A. D., 
Kirshenbaum, K. & Grier, D. G. Holographic 
immunoassays: direct detection of antibodies binding 
to colloidal spheres. Soft Matter 16, 10180–10186 
(2020).

127.	Draine, B. T. The discrete-​dipole approximation and its 
application to interstellar graphite grains. Astrophys. J. 
333, 848–872 (1988).

128.	Ruffner, D. B., Cheong, F. C., Blusewicz, J. M. & 
Philips, L. A. Lifting degeneracy in holographic 
characterization of colloidal particles using multi-​color 
imaging. Opt. Express 26, 13239–13251 (2018).

129.	Rawat, S., Wendoloski, J. & Wang, A. cGAN-​assisted 
imaging through stationary scattering media.  
Opt. Express 30, 18145–18155 (2022).

130.	Abadi, M. et al. TensorFlow: large-​scale machine learning 
on heterogeneous distributed systems. Preprint at 
https://doi.org/10.48550/arXiv.1603.04467 (2015).

131.	Bradbury, J. et al. JAX: composable transformations of 
Python + NumPy programs. GitHub http://github.com/
google/jax (2018).

132.	Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A.  
& Blei, D. M. Automatic differentiation variational 
inference. J. Mach. Learn. Res. 18, 1–45 (2017).

133.	Jouppi, N. P. et al. In-​datacenter performance analysis 
of a Tensor Processing Unit. in Proc. 44th Annual Int. 
Symp. Computer Architecture 1–12 (Association for 
Computing Machinery, 2017).

134.	Leith, E. N., Upatnieks, J. & Haines, K. A. Microscopy 
by wavefront reconstruction. J. Opt. Soc. Am. 55, 
981–986 (1965).

135.	Schnars, U. & Jüptner, W. Direct recording of 
holograms by a CCD target and numerical 
reconstruction. Appl. Opt. 33, 179–181 (1994).  
This paper represents another major development 
in the field of holographic microscopy: the 
application of the digital camera, which allows 
holograms to be reconstructed numerically rather 
than optically.

136.	Hickling, R. Holography of liquid droplets. J. Opt. Soc. 
Am. 59, 1334–1339 (1969).

137.	Slimani, F., Grehan, G., Gouesbet, G. & Allano, D. 
Near-​field Lorenz–Mie theory and its application  
to microholography. Appl. Opt. 23, 4140–4148 
(1984).

138.	Trujillo, C., Castañeda, R., Piedrahita-​Quintero, P.  
& Garcia-​Sucerquia, J. Automatic full compensation  
of quantitative phase imaging in off-​axis digital 
holographic microscopy. Appl. Opt. 55, 10299–10306 
(2016).

139.	Popescu, G. et al. Fourier phase microscopy for 
investigation of biological structures and dynamics. 
Opt. Lett. 29, 2503–2505 (2004).

140.	Joo, C., Akkin, T., Cense, B., Park, B. H. & de. Boer, J. F. 
Spectral-​domain optical coherence phase microscopy 
for quantitative phase-​contrast imaging. Opt. Lett. 30, 
2131–2133 (2005).

141.	Piliarik, M. & Sandoghdar, V. Direct optical sensing  
of single unlabelled proteins and super-​resolution 
imaging of their binding sites. Nat. Commun. 5, 1–8 
(2014).

142.	Young, G. et al. Quantitative mass imaging of single 
biological macromolecules. Science 360, 423–427 
(2018).

143.	Mahmoodabadi, R. G. et al. Point spread function in 
interferometric scattering microscopy (iSCAT). Part I: 
aberrations in defocusing and axial localization. Opt. 
Express 28, 25969–25988 (2020).

Acknowledgements
Work at Harvard is supported by the National Science 
Foundation under grant DMR-2011754 and by the 
Department of Defense through the National Defense Science 
& Engineering Graduate Fellowship Program. Work at UNSW 
Sydney was supported by the Human Frontier of Science 
Program Grant (RPG0029/2020 to A.W.), and A.W. was sup-
ported by the Australian Research Council Discovery Early 
Career Award (DE210100291). Work at NYU was supported 
by the National Science Foundation under grants DMR-
2104837, DMR-1420073 and DMR-0922680, and by the 
National Institutes of Health under grant R44TR001590.

Author contributions
Introduction (C.M., L.E.A., S.R., A.W., D.G.G. and V.N.M.); 
Experimentation (C.M., L.E.A., S.R., A.W., D.G.G. and 
V.N.M.); Results (C.M., L.E.A., S.R., A.W., D.G.G. and V.N.M.); 
Applications (C.M., L.E.A., S.R., A.W., D.G.G. and V.N.M.); 
Reproducibility and data deposition (C.M., L.E.A., S.R., A.W., 
D.G.G. and V.N.M.); Limitations and optimizations (C.M., 
L.E.A., S.R., A.W., D.G.G. and V.N.M.); Outlook (C.M., L.E.A., 
S.R., A.W., D.G.G. and V.N.M.); Overview of the Primer (C.M., 
L.E.A., S.R., A.W., D.G.G. and V.N.M.).

Competing interests
D.G.G. is a founder of Spheryx, Inc., which manufactures 
instruments for holographic particle characterization. The 
remaining authors declare no competing interests.

Peer review information
Nature Reviews Methods Primers thanks Radim Chmelik; 
Laurence Wilson, who co-​reviewed with Sam Matthews; and 
the other, anonymous, reviewer(s) for their contribution to the 
peer review of this work.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.
 
Springer Nature or its licensor holds exclusive rights to this 
article under a publishing agreement with the author(s) or 
other rightsholder(s); author self-​archiving of the accepted 
manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

Related links
CATCH: https://github.com/laltman2/CATCH
HDF5: https://www.hdfgroup.org/solutions/hdf5/
HoloPy: http://holopy.readthedocs.io/
pylorenzmie: https://github.com/davidgrier/pylorenzmie

 
© Springer Nature Limited 2022

	  17NAture RevIews | MetHoDs Primers | Article citation ID:            (2022) 2:83 

P r i m e r

0123456789();: 

https://doi.org/10.48550/arXiv.2204.13068
https://doi.org/10.48550/arXiv.2204.13068
https://doi.org/10.48550/arXiv.1603.04467
http://github.com/google/jax
http://github.com/google/jax
https://github.com/laltman2/CATCH
https://www.hdfgroup.org/solutions/hdf5/
http://holopy.readthedocs.io/
https://github.com/davidgrier/pylorenzmie

	In-​line holographic microscopy with model-​based analysis

	Experimentation

	Instrument layout. 
	Sample preparation. 
	Data collection. 

	Results

	Generative modelling. 
	Machine-​learning analysis. 
	Hybrid approaches. 

	Applications

	Colloidal dynamics and self-​assembly. 
	Microrheology and stress measurements. 
	Microorganisms and organelles. 
	Detection of molecules. 
	Characterizing industrial dispersions. 

	Reproducibility and data deposition

	Limitations and optimizations

	Generative modelling. 
	Machine learning. 
	Hybrid approaches. 
	More general limitations. 

	Outlook

	Acknowledgements

	Fig. 1 Hologram formation and analysis.
	Fig. 2 Detailed set-up of an in-line holographic microscope.
	Fig. 3 Data normalization for hologram analysis.
	Fig. 4 Approaches to quantitative analysis of holograms.
	Fig. 5 Motion and tracking.
	Fig. 6 Property estimation and characterization.




