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PrecisionMeasurements of Colloidal Dynamics with
Holographic Microscopy

Abstract

To build a holographic microscope, take a standard optical microscope and illuminate the sample

with a coherent light source like a laser. Light scattered by the specimen interferes with the trans-

mitted beam, producing an interference pattern called a hologram, a two-dimensional image that

encodes three-dimensional information about the sample. While holograms are typically interpreted

through reconstruction, recent advances in computational methods have enabled a new approach:

extracting information directly from holograms using generative modeling. The combination of

holographic microscopy and model-based analysis is well suited to applications where precise, quan-

titative results are needed with high acquisition speed, including characterizing colloidal dispersions,

following the motion of microscopic objects in three dimensions, or measuring colloidal interac-

tions.

I overview methods and applications of generative modeling to holographic microscopy. I then

consider the application of those methods to understanding colloidal suspensions, micrometer-

scale particles suspended in fluids. With holographic microscopy, we can characterize and track col-

loidal particles in three dimensions with high precision. However, the accuracy of particle tracking

and characterization depends on how well we model hologram formation. I investigate the effects

of spherical aberration on the structure of single-particle holograms and on the accuracy of par-

ticle characterization. I show that fitting a model that accounts for spherical aberration decreases

aberration-dependent error, even when the spherical aberration in the optical train is unknown.
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With this new generative model, the inferred parameters are consistent across different levels of aber-

ration, making particle characterization more robust.

Finally, I use holographic microscopy and generative modeling to characterize short-ranged col-

loid interactions. Understanding the interactions between colloidal particles is essential for predict-

ing and controlling colloidal self-assembly, but methods to characterize these interactions can be

limited to observing highly constrained particles. Moreover, these methods can face issues with

precision due to multiple scattering between particles and out-of-plane fluctuations. I demon-

strate an alternative method to infer particle potentials from holographic data. This method rig-

orously accounts for scattering effects, works in three dimensions, and does not require the particles

to be trapped in an optical potential. With this method, I precisely track pairs of freely-diffusing

spheres in three dimensions and at high frame rates. I show that by using Bayesian inference, we

can measure separation distances as small as a few nanometers between micrometer scale particles

to nanometer-scale precision. From these precise measurements of gap distances, I quantify the

short-ranged forces acting on the colloidal particles with model-free and model-based methods. I

characterize a range of depletion-driven particle interactions with varying particle size and depletant

concentration, and precisely quantify the well curvature about the potential minimum.
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We saw to the edge of all there is —

So brutal and alive it seemed to comprehend us back.

Tracy K. Smith,MyGod, It’s Full of Stars

1
Introduction

Wilson Bentley, the first recorded person to take photomicrographs of snowflakes, de-

scribed his subjects as “tiny miracles of beauty”1. Bentley’s images of the delicate structure of snow

crystals gave rise to a widespread misconception that no two snowflakes can ever be alike. But we

now know that this is not true. Snowflakes form after nucleation on a seed, with water molecules

crystallizing as the snowflake tumbles in a chaotic path through a cloud with locally varying tem-
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Figure 1.1: (a) Photomicrographs of natural snowflakes published by Wilson Bentley showing the wide array of self‐
assembled structures that snowflakes can have. Image from Plate XIX1, in the public domain. (b) Photomicrographs of
two “twin” snowflakes grown in a lab under identically varying temperature and humidity conditions. As the snowflakes
grow, they deplete water vapor from the surrounding air, leading to a local region of low humidity with few condensed
droplets surrounding the snowflakes. Image by Kenneth G. Libbrecht ©, reused with permission.

perature and humidity. It is the randomness of this path, and the sensitive phase behavior of crystal

growth in the basal or prism facets under different conditions, that leads to the unique structure of

snowflakes. But when two nucleation seeds are exposed to the same variations in temperature and

humidity (in a lab, rather than a cloud), the same structure emerges – not by a miracle, but by as-

sembly2. While snowflake growth may seem chaotic, the structure emerges by predictable physical

processes, including nucleation, crystallization, and growth instabilities.

In this thesis, we do not attempt to unravel the complex physics of snowflake assembly. The

growth of a single snowflake involves over 100 quintillion water molecules; tracking the motion

of those molecules as the snowflake forms is a daunting, if not impossible, task. We do, however,

consider what is needed to understand how complex structures emerge and assemble: quantitative

measurements of the interactions between the components. To do so, we consider a much simpler,

synthetic system called colloidal suspensions.
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Figure 1.2: (a) Bright‐field microscope image of 1.3µm diameter polystyrene spheres on a glass slide. The particles are
freely diffusing on the surface, and have an attraction induced by the presence of depletant polymers. (b) Diagram of
Brownian motion. Due to random collisions with the molecules of the surrounding fluid, colloidal particles move with a
random walk. (c) Diagram of two interacting spheres. Colloidal particles interact through a pair potential that depends
on their distance from each other. The interaction – the sum of the attractive and repulsive forces between them – has
a well depth of the order of kbT.

1.1 Colloidal suspensions

Colloidal particles, or colloids, colloquially, are microscopic particles suspended in a fluid, small

enough to be stochastic in their dynamics owing to random Brownian motion, but large enough to

be observed with a bright-field optical microscope.

Colloidal suspensions can make up commercial products like paints or inks, or close-packed

arrangements of spheres with interesting optical properties such as structural color3 or photonic

bandgaps4. But we can also consider colloidal spheres model “big atoms”5 that can be used to study

phenomena like self-assembly or self-organization. We can synthesize colloidal spheres with interac-

tions that we can control, and we can observe colloids in real time as they form compact clusters6,

arrange themselves into a crystal lattice7, or undergo phase transitions8. By observing how the parti-

cles assemble, move, and interact, we can understand the interplay between energy and entropy that

leads to the emergence of structure.
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In the process of self-assembly, that interplay between energy and entropy can be understood

by the minimization of free energy, F = U − TS, which depends on both the energyU and the

entropy S at temperature T. We may naively conceive of self-assembly as the victory of the order of

interactions over the disorder of entropy, occurring only when the pull of the attraction between

subcomponents is strong enough to wrest an ordered structure from chaos. But this is not always

the case. In fact, order can emerge from entropic effects alone, such when densely packed micro-

scopic spheres spontaneously crystallize to maximize the configurational space available to them9.

Entropy can act in tandem with energy to stabilize configurations, allowing the emergence of a par-

ticular structure.

How are we to understand the subtle role entropy can play in the emergence of structure? How

are we to quantify the energetic terms for a particular system? And what forces and interactions gov-

ern particle dynamics at the microscopic scale? These questions can be challenging to answer, espe-

cially for atomic or molecular-scale systems where it is impossible to track every interacting particle.

Colloidal suspensions, by contrast, are much larger, making it possible to track every subcomponent

to understand how they interact and assemble. With measurements of where these particles are in

space over time, we can begin to unravel the forces, energy, and entropy of the system.

Measurements of colloidal motion can reveal unexpected phenomena and new physics. Observa-

tions of the motion of single particles have led to the validation of theories of diffusion for colloidal

spheres10, the discovery of surprisingly long relaxation times of colloidal particles pinned at an in-

terface11,12,13,14, and the recognition of unexpected diffusion mechanisms of helical particles in a

dense suspension15,16. Observations of many-particle dynamics have been used to make rheological

measurements of synthetic and biological systems17,18,19,20, to understand phase transitions of hard

sphere colloidal particles9,21, or to track defects and dislocations as they move through a colloidal

crystal22,23. The motion of small clusters has also been used to unravel the physics of colloidal inter-

actions, including the role of hydrodynamics in colloidal systems24, DNA-mediated interactions25,
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or unexpected multi-body effects such as like-charge attraction26,27,28,29.

Colloidal dynamics began with a mystery: when we suspend colloidal particles in a fluid and

put them under a microscope, the particles appear to dance. Robert Brown was the first to observe

this motion through microscopic observations of small pollen grains suspended in water. After

observing the microscopic grains, he noted the “very unexpected fact of seeming vitality retained by

these minute particles”30. He eventually found that this diffusive motion was not a vitality exclusive

to biological material, but existed for all manner of microscopic particles suspended in fluids. It was

not a marker of life, but rather a result of the molecular nature of matter itself.

In addition to stochastic forces from collisions with the fluid, colloidal particles can also exert

forces on each other. By measuring the statistics of the motion of two interacting particles, we can

infer the underlying interactions between the components. In equilibrium, the distribution of dis-

tances r between two particles is given by a Boltzmann distribution that depends on the particle pair

potentialU(r) such that

p(r) ∝ exp [−βU(r)] , (1.1)

where β = 1/kbT, kb is the Boltzmann constant, and T is the temperature. Measurements of the dis-

tribution of positions that the interacting particles sample thus gives us insight into the underlying

pair potential, which has implications for quantifying the energy and entropy in a particular system

and understanding self-assembly and structure formation.

Accurate knowledge of short-ranged interactions between particles is essential for controlling

and predicting a range of behavior in soft matter, from crystallization31 to defect mobility22,23 to

cell clustering32. In colloidal systems, interactions between micrometer-scale particles can be ex-

perimentally tuned through screened electrostatics33, entropically-driven depletion interactions8,

or DNA-mediated attraction from base-pairing of single-stranded DNA polymers rooted on the

surfaces of the particles34.
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By changing the attractive and repulsive forces the particles experience, we can experimentally

control the phase behavior and self-assembly of colloidal spheres. In fact, the assembled structure

can be sensitive to the depth and curvature of the interparticle potential well. For example, the

depth of the potential well can control whether a bond between particles is transient or stable.

When the well depth is close to the order kbT – the order of thermal fluctuations in the system –

particle bonds are short-lived. Well depths much greater than kbT, on the other hand, can make

bonds effectively permanent. This tunability in bond behavior can be observed in lock-and-key

colloids35, which take advantage of particle geometry such that only bonds formed by on-target

binding of smaller “key” particles in the dimple of a larger “lock” particle are stable, while bonds

formed by off-target binding outside of the dimple are transient.

But it is not just the depth of the well that controls structure and assembly behavior. The shape

of the potential can also sensitively impact structure formation. For colloidal clusters with a short-

ranged depletion interaction, the probability of finding nonrigid clusters depends sensitively on

the curvature of the pair potential about the minimum, which controls the vibrational entropy

of each structure6. In fact, Meng and coworkers found discrepancies between measurements and

theoretical predictions of cluster populations, which they attribute to the difficulty in precisely

quantifying both the depth and curvature of the particle pair potentials. Similarly, vibrational and

rotational entropy can also stabilize open lattices of patchy colloidal particles. In both experiment

and simulation, the open Kagome lattice of patchy particles has been found to be stabilized by the

additional “rattle room” available to the particles as compared to the close-packed lattice36,37.

Accurate knowledge of underlying particle interactions is also essential for computationally pre-

dicting colloidal behavior. Simulations have been used to predict design rules38 and to infer the

potential needed to achieve a particular self-assembled structure39,40. With advances in automatic

differentiation, entire particle simulations can be optimized for the inverse design of material struc-

ture, properties41, or even kinetics42. Knowledge of particle interactions can also be helpful for
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predicting dynamics, such as with particle tracking algorithms that have improved accuracy by in-

corporating particle interactions43.

These examples show the importance of understanding how colloidal particles interact. To solve

such problems such as tuning assembled structures or predicting equilibrium populations, we need

to precisely characterize both the depth and curvature of the potential well.

1.2 Holographic microscopy

So far, I have claimed that colloids are ideal systems for understanding microscale forces, entropic

effects, and structure formation because they are easily observable. And due to their stochastic mo-

tion from thermal fluctuations, two particles in equilibrium will sample their free energy landscape,

leading to a distribution of gap distances between the particles that depends on the pair potential.

By quantifying the statistics of particle positions, we can measure the underlying particle interac-

tions, enabling us to better understand and predict colloidal assembly, and to understand the funda-

mental forces that colloidal particles experience.

These interactions – such as depletion, screened electrostatics, or van der Waals forces – can

be very short-ranged, acting on the order of nanometers from the surface of the micrometer-scale

sphere. Thus, we require that any measurements we make of their relative position be precise to the

nanometer scale. Additionally, in order to directly measure the particle interactions, we would like

to measure the particles as they freely move in three dimensions, without confinement or an exter-

nal potential. Thus, if we are to probe colloidal interactions by measuring the relative positions of

two interacting spheres, we need rapid, three dimensional particle localization to nanometer-scale

precision without confinement.

To achieve these requirements, I use holographic microscopy, a technique where a sample is il-

luminated with a coherent beam and we record the inference between that beam and the light scat-
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Figure 1.3: (a) Diagram of holographic microscope. Incident coherent light is scattered by the sample. We record the
inference pattern of the two fields, a hologram. (b) Recorded hologram of 1.3µm diameter polystyrene sphere with
best‐fit hologram found by fitting a model to the data. The best fit parameters quantify where the particle is in three
dimensional space, as well as its size and composition.

tered by the object of interest (Fig. 1.3a). This thesis focuses on the development and application

of generative modeling approaches to holographic microscopy. The combination of holographic

microscopy and model-based analysis is well suited to applications where precise, quantitative results

are needed with high acquisition speeds, such as characterizing colloidal dispersions, following the

motion of microscopic objects in three dimensions, or measuring colloidal interactions.

I first discuss the advantages and applications of a model-based approach to analyze holograms

in order to extract quantitative information about a particle’s three dimensional position, size, and

composition (Fig. 1.3b) in detail in Chapter 2. I then discuss my work to improve the models we

fit to holograms by accounting for optical effects, such as transformations from lenses in the optical

train and distortions induced by spherical aberration. I find that by modeling these effects, we can

more accurately characterize particles in aberrated and unaberrated systems. Finally, I discuss my

application of these methods to precisely infer short-ranged colloidal interactions. I characterize a

range of particle interactions and achieve nanometer-level precision with a Bayesian approach to

the data analysis. I end by looking forward. I consider expansions of the method I developed here,

discuss alternative approaches to inferring pair potentials of many interacting particles, and broadly

consider how this work fits into the growing trend of quantitative microscopy.
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I climbed the three staircases, raised the trapdoor of the

attic, and having reached the leads, looked out afar over

sequestered field and hill, and along dim sky-line: that

then I longed for a power of vision which might overpass

that limit; which might reach the busy world, towns,

regions full of life I had heard of but never seen.

Charlotte Brontë, Jane Eyre

2
In-line holographic microscopy with

model-based analysis

The contents of this chapter have been previously published44. Reprinted with permission from:

“In-line holographic microscopy with model-based analysis.” Caroline Martin, Lauren E.

Altman, Siddharth Rawat, AnnaWang, David G. Grier, Vinothan N. Manoharan. Nature
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It is not difficult to make a holographic microscope – that is, a microscope that captures holo-

grams rather than photographs. One needs only to replace the white light source in a standard light

microscope with a laser aimed at the specimen. The resulting instrument captures in-line holo-

grams45. Though the word hologrammight evoke images from popular culture, such as projections

of Tupac Shakur or Princess Leia, a true hologram is not an image projected in three-dimensional

(3D) space. Instead, it is pattern of bright and dark fringes. The fringes of an in-line hologram form

when light scattered from the specimen interferes with light transmitted through it, as shown in

Figure 2.1a.

Compared to a conventional photograph, a hologram such as the examples in Figure 2.1b can

be difficult to interpret by eye. And unlike the vivid, colorful photographs captured by optical

microscopy, the monochrome fringes of a hologram are unlikely to grace a journal cover. These

concerns raise the question of why anyone would want to convert a microscope into a holographic

microscope.

Our answer is that what is important is not the image itself, but instead what we infer from it. We

usually want to do more than just see a microscopic object; we want to precisely quantify its prop-

erties — what it is made of, how big it is, where it lies in 3D space, and how fast it moves. This is
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Figure 2.1: Hologram formation and analysis. a) Incident coherent light (light blue) interferes with the light scattered
(dark blue) by a specimen. Useful information about the specimen can be extracted from the resulting interference
pattern, or hologram, shown as the intensity across its centerline. b) Holograms, best fits, and 3D renderings of a single
sphere, sphere doublet, and a capsule‐shaped bacterium (bottom row adapted from Wang et al. 46). Best‐fit holograms
and 3D renderings are generated from the estimated properties of the specimen, including position, diameter, and
refractive index. c) Diagram showing how analyzing many holograms from a specimen yields information that is useful
for applications. Analyzing many holograms from the same object as a function of time can reveal its motion in 3D space
or how its properties change. Analyzing holograms from a population of objects can differentiate multiple species within
a sample. Finally, analyzing a hologram from a population of objects over time can reveal changes in the distribution of
properties.
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where holographic microscopy excels. Electromagnetic radiation has both an amplitude and phase,

but conventional optical microscopes capture little information about the phase. By contrast, a

holographic microscope is designed to capture phase information, which is encoded in the fringes.

The phase information allows us to quantify many features of a microscopic specimen. For exam-

ple, the 3D structure and composition of a specimen can be inferred from a single 2D hologram.

Denis Gabor, the inventor of holography, showed that shining light through a recorded hologram

generates a 3D reconstruction of the light scattered by the original object47,48. Reconstruction has

enabled non-invasive 3D imaging of colloidal particles49,50,51, material microstructures52, microor-

ganisms49,52,53,54,55, and living eukaryotic cells56,57,58. More complex optical setups can provide

additional information about phase changes within a specimen59,60,61 and yield tomograms of com-

plex 3D specimens62,63.

This chapter focuses on an alternative analysis methodology: extracting information directly

from the hologram without reconstructing it. The analysis relies on physics-based models of how

microscopic objects scatter light. Unlike reconstruction, model-based analysis requires prior infor-

mation about the object’s shape and structure. This information influences the choice of model.

For objects like colloidal particles, which might be described as spheres64,65,66, ellipsoids67, sphero-

cylinders68, or clusters of spheres69, models can be based on exact solutions to Maxwell’s equations

that describe the scattering. For other specimens, such as living cells, the scattering can either be nu-

merically simulated68,70,71 or the specimen can be modeled as a simpler shape, such as a sphere. In

each of these cases, the scattered fieldEinc(r) is a function of the object’s 3D position (r), orienta-

tion, refractive index, and size. We can predict the intensity I(r) of the hologram by accounting for

the interference with the reference fieldEinc(r):

I(r) = |Einc(r) + αEscat(r)|2, (2.1)
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where the phenomenological parameter α accounts for imperfections in the illumination66.

Modeling enables three different approaches to hologram analysis. In the first, we directly fit the

model to an experimentally captured hologram to infer information about the object — a generative

modeling approach. In the second, we use modeling to train an algorithm to classify and quantify

features from experimentally captured holograms— a machine-learning approach. In the third, we

use machine-learning to estimate parameters and then refine these estimates by fitting a generative

model — a hybrid approach. As we shall show, a lot of information can be extracted from a holo-

gram, including the object’s size, orientation, and composition, as well as its 3D location (Figure

2.1b). The uncertainties in these measurements can be remarkably small. The size and 3D position

of a microscopic object can be measured to nanometer-scale precision, while the refractive index and

orientation can be measured to part-per-thousand precision66.

Where high-precision measurements are the main goal, a model-based analysis has several ad-

vantages over reconstruction. First, model-based analyses directly give values and uncertainties for

quantities of interest. By contrast, reconstructions and tomograms are images —albeit 3D ones—

that do not quantify the properties of the specimen without further analysis. Second, models ac-

count for the complex scattering of objects similar in size to the wavelength of light, such as colloidal

particles or bacteria. For such objects, diffraction can distort reconstructions72. Third, model-based

analyses yield precise results even with the simplest optical setup, the in-line configuration shown in

Figure 2.1a. Unless otherwise stated, we use the term holographic microscope to refer only to this

microscope configuration.

The wealth and precision of information that can be extracted from in-line holograms with a

model-based approach enables a host of applications, including 3D tracking of colloidal particles,

measuring the forces exerted by cells, analyzing the composition of complex dispersions, and per-

forming sensitive biochemical assays (Figure 2.1c). Many of these applications benefit from the

speed of a holographic microscope. Holograms can be collected as quickly as the camera records
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images because no mechanical adjustments are needed to keep the object in focus; any movement

in the axial direction can be measured from the fringes. Typically, analyzing holograms takes more

time than acquiring them. However, many sensitive and sophisticated analyses can be done in near-

real time on a personal computer.

The model-based approach requires a careful choice of analytical method and some prior knowl-

edge of the sample. As a result, it has some limitations, which we discuss in the penultimate section

of this chapter. Other sections explore how to create and use a holographic microscope; how to an-

alyze the data; what measurements can be made; what reproducibility issues might be encountered

and how to overcome them. In the final section we consider the future of model-based analysis, an

emerging paradigm for microscopy.

2.1 Experimentation

2.1.1 Instrument layout

One can convert an optical microscope to an in-line holographic microscope by making the illu-

mination coherent, as shown in Figure 2.2a. The new illumination source can be either a laser or a

partially coherent source, such as a single-color light emitting diode (LED). The illumination beam

should be collimated and directed into the sample. Light passing through the sample is collected by

the microscope’s objective lens and projected by its tube lens onto an area sensor, typically a com-

plementary metal oxide semiconductor (CMOS) camera. If the sample is not too dense or opaque

— the usual condition under which optical microscopy is done— the incident beam will be weakly

scattered, such that most of it is unperturbed. This unperturbed, transmitted light then interferes

with the light scattered by the sample to form a hologram.

To integrate a coherent illumination source with the microscope, we place a fiber-collimated laser

with narrow spectral bandwidth73 between the illuminator and the phase ring turret/condenser, as
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Figure 2.2: Detailed setup of in‐line holographic microscope. a) Schematic of beam path and optical layout for an
in‐line holographic microscope with coherent illumination. A single‐mode fiber coupled to the laser spatially filters the
beam. The filtered beam (red) is steered to the sample plane, where it scatters from the specimen. The scattered and
transmitted beams go through the objective and tube lens to the detector. b) Photograph of an in‐line holographic mi‐
croscope with a fiber‐collimated laser source and no condenser lens, built on a standard inverted optical microscope. C)
Photograph of an in‐line microscope with LED source, where the inbuilt condenser lens collimates the partially coherent
source.
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shown in Figure 2.2b. We use single-longitudinal-mode diode lasers because they are inexpensive

and bright. Furthermore, their coherence length is not too large, so that reflections from various

glass surfaces in the microscope do not produce extraneous interference in the hologram. Alterna-

tively, one can use a partially coherent source, such as an LED, as shown in Figure 2.2c. The low

temporal and spatial coherence of LEDs can further suppress extraneous fringes and speckle rela-

tive to a diode laser74. The longitudinal coherence length of commercially available LED sources

is on the order of a few micrometers, which is large enough to obtain holograms of objects smaller

than this scale, such as colloidal particles. Inserting a pinhole between the LED and the sample in-

creases the spatial coherence but also reduces brightness75,76. One must collimate the LED source

by adjusting the distance between the LED and the microscope’s inbuilt condenser lens. If the illu-

mination source is already collimated, the condenser can be removed from the beam path.

Model-based analysis of holograms is most effective if the incident mode has the simplest possible

structure. Therefore, we spatially filter the illumination source by, for example, coupling the laser

source to a single-mode fiber. The illumination beam can then be reasonably described as a plane

wave. We set or measure its polarization, which we need to model the scattered field.

The choice of objective lens depends on the size of the object to be imaged. For micrometer-scale

objects, we use an objective with a high numerical aperture (NA), such as an oil-immersion or water-

immersion lens. Though a water-immersion objective has a lower NA than an oil-immersion objec-

tive, it is potentially more useful for aqueous specimens because it reduces the spherical aberration

introduced by a glass coverslip77. In either case, it is important to select an objective that does not

contain a phase plate, an inbuilt optical element used for phase-contrast microscopy, which would

distort a hologram.

It is also possible to eliminate the objective lens altogether. One can construct a lensless holo-

graphic microscope from a coherent light source, a pinhole, and a sensor placed close to the sam-

ple75,78. Lensless microscopes tend to have a small effective NA and a large effective pixel size. They
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therefore cannot collect the strongly diverging light scattered by small particles or resolve finely

spaced interference fringes. Lensless holography therefore is most effective for tracking and char-

acterizing particles that are several times larger than the wavelength of light.

2.1.2 Sample preparation

Scattering from the sample chamber can add unwanted background interference to a hologram.

To minimize background interference, we place our specimens in a sealed sample cell consisting of

two glass coverslips separated by a spacer about 100 μm in height. The spacers can be silicone-based

vacuum grease, double-sided tape, thin strips of plastic affixed with UV-curable epoxy, or silicone

gaskets. We avoid evaporation and undesired flow by sealing the chamber with silicone grease or

epoxy.

Some experiments require the sample to flow through the microscope’s observation volume. To

make a simple flow chamber, we place spacers between two glass surfaces and leave the edges un-

sealed. We then add a droplet or an absorbent material to one end to draw fluid through the channel

by capillary action. To drive flow in more sophisticated flow chambers, such as microfluidic chips79,

we use syringe-pumps or pressure-pumps. We reduce interference due to reflections by making the

channels wider, imaging the objects or particles only when they are a few micrometers away from

the walls, or matching the refractive index of the fluid medium to that of the wall material. Flow

enables high-throughput experiments, but one can also use an automated stage and a multi-well

sample plate to carry out such experiments without flow.

Interfaces between fluids with different refractive indexes can significantly distort holograms.

Holograms of particles at or near an interface should therefore be made in regions where the inter-

face is flat. To encourage an air-water or oil-water interface to remain flat, we pin the interface11

using a machined or 3D-printed chamber with a thin, flat lip.

Holograms can also be degraded by non-uniform illumination80, undesired scattering from dust
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particles or other out-of-focus objects, and optical aberrations81. If the hologram formation model

does not correct or account for these effects, they can introduce errors into the inferred informa-

tion. A spatial filter can alleviate non-uniform illumination, while a low-coherence source, such as a

laser diode or LED, can attenuate holograms from out-of-focus objects. Cleaning the coverslips —

by, for example, plasma cleaning, rinsing with purified water, and drying with nitrogen— reduces

background scattering from dust in or on the sample chamber. If the sample solution is sufficiently

dilute, the hologram of the object of interest will not substantially overlap with holograms of other

objects. Typically, the sample should be dilute enough for the particles or objects to be at least a few

micrometers apart82. With a dilute system, one can also record images with no objects in the field of

view, and use these images to correct for background scattering. Finally, a water-immersion lens can

minimize the effects of spherical aberration. Alternatively, spherical aberration can be incorporated

in the model81.

2.1.3 Data collection

The camera on a holographic microscope does not need to be expensive. For experiments involving

a single illumination source, we use a monochrome sensor, because the filters on a color sensor re-

duce sensitivity and spatial resolution. Shortening the exposure time reduces motion blurring83,84

at the expense of the overall image intensity. Increasing the illumination intensity can compensate

for this effect. The quality of the recorded image is limited by the signal-to-background ratio, which

favors photodetectors with a dynamic range large enough to capture bright fringes without satura-

tion and dark fringes without underexposure. High quantum efficiency is not necessary and can be

counterproductive, since the reference wave produces a large background signal that can saturate a

high-efficiency detector. Therefore, the cooled, high quantum-efficiency, expensive cameras used in

single-molecule and other precision microscopy techniques are unsuited to holographic microscopy.

Fast cameras enable experiments on fast-moving or quickly changing specimens. They require
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hardware that can handle their high data rates. For example, a 1-megapixel camera operating at 1000

frames/s transfers 1 GiB/s of 8-bit grayscale images to a computer. This computer needs a fast in-

terface— the latest USB, 10-gigabit ethernet, or a proprietary connection, often operating on a

dedicated controller card— a fast internal bus to transfer the data, and a solid-state drive with a high

write speed. We recommend a computer with the latest PCIe (Peripheral Component Interconnect

express) bus for rapid, parallel data transfer and, ideally, a large amount of random access memory

(RAM) to buffer the data stream. Many cameras come with their own proprietary control software,

but the academic community has also developed open-source software such as μManager85, which

can be used to control various models of camera and the microscope itself.

Some processes, such as cells flowing through a channel at high speed86, may be so fast that fea-

tures of interest are blurred even at the shortest camera exposure times. For such processes, we pulse

a laser diode to illuminate the samples for a short time (microseconds), as in strobe photography.

Many cameras include synchronization input and/or output ports. We use these ports to synchro-

nize the camera and laser diode with each another or with a pulse generator87,88.

2.2 Results

Holograms encode comprehensive information about the position and composition of individ-

ual particles or biological specimens. In a model-based analysis, we extract this information by fit-

ting a generative model to the hologram65,66,68,89,90,91, by analyzing the hologram with a trained

machine-learning system92,93,94, or by some combination of the two. Although all three approaches

require minimal processing of the hologram, some preprocessing is beneficial for reliable results.

We typically normalize holograms by subtracting the dark count from both the raw hologram and

background and then taking their ratio95, as shown in Figure 2.3. These linear transformations re-

move instrument-dependent effects and facilitate comparison to models. We obtain dark counts by
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Figure 2.3: Data normalization for hologram analysis. To normalizing a hologram, we subtract a frame‐averaged dark
count (middle) from a raw hologram (far left) and then divide by a dark‐count‐corrected background image (second from
left). We then crop the normalized hologram (second from right) around the feature of interest associated with a particle
(far right). The extent of the cropped hologram depends on the size of the specimen and its distance from the focal
plane.

recording images with the illumination off, and we obtain background images by recording fields of

view with no particles in frame, ideally at the same axial position as the data.

After normalization, we crop the hologram to the region of interest, which is typically a few hun-

dred pixels wide. The size of the cropped hologram should be large enough to capture many holo-

gram fringes, but small enough to avoid overlap with nearby objects. We automate this process by

using algorithms based on Hough transforms83,96,97 or machine learning93,94.

The computational power required to extract information about the specimen depends on the

number of pixels in the hologram. However, the fringes of a hologram are often symmetric, and

therefore much of the information is redundant. Consequently, most of these pixels can be dis-

carded. Dimiduk andManoharan found that by randomly selecting98 just 2.5% of pixels and dis-

carding the rest, they could accurately analyze holograms while reducing computational time by an

order of magnitude99. Selecting a random subset of pixels is now a standard part of our hologram

pre-processing routine.
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2.2.1 Generative modeling

To explain the generative modeling approach, we first consider inferring physical information about

a single spherical particle from its hologram, as shown in Figure 2.4. A generative or forward model

can realistically simulate the hologram of such a particle as a function of its position, size, and opti-

cal properties. One can then fit the model to the data to infer these parameters. The simplest fitting

approach is to iteratively modify the parameters until the differences between the model and data

are minimized.

A generative model of a single spherical object might use Lorenz-Mie theory64 — the exact solu-

tion toMaxwell’s equations for scattering from a spherical particle — to calculate the scattered field.

It would then simulate a hologram by calculating the interference between this field and a planar ref-

erence wave65,66. Such a model includes six parameters: the size and refractive index of the sphere,

its 3D position, and α, the phenomenological parameter from Eq. 2.1. The hologram recorded on

the detector is treated as a magnified image of the hologram at the objective’s focal plane.

To fit this model to a recorded hologram, one can use a nonlinear least-squares method such as

the Levenberg-Marquardt algorithm100. If the fitting algorithm is given a good initial guess, it can

find parameter values that globally minimize the discrepancy between the model and the recorded

hologram. Fitting the single-sphere model to data yields precise estimates of the sizes, optical prop-

erties, and 3D positions of individual colloidal particles66. This approach has been applied to mea-

suring diffusion101,102, quantifying interactions between a sphere and fluid interface11,12,13, track-

ing particle motion in an optical trap103,104,105, differentiating species of particles within a mix-

ture93,106,107,108, measuring the growth of colloidal particles during chemical synthesis109, and in-

ferring the refractive index110 and rheological properties111 of the medium in which the spherical

particles are embedded.

Perhaps more surprisingly, the single-sphere model is a useful approximation for non-spherical
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Figure 2.4: Approaches to quantitative analysis of holograms. A flow chart of approaches to hologram analysis, in which
a single colloidal sphere serves as an example specimen. In a machine‐learning approach, neural networks trained with
generated data detect, localize, and estimate the properties of particles. In the localization module, an object‐detection
convolutional neural network (CNN) detects any holographic features in a normalized field of view and determines the
center, xp and yp, and extent of each detected feature. A property‐estimation module, which is also a CNN, estimates
the particle’s diameter dp, refractive index np, and axial position zp from the cropped holograms. In a generative mod‐
eling approach, the first steps are normalizing and cropping the field of view around the hologram of interest, which is
automatically detected with a Hough transform. A nonlinear least‐squares or MCMC algorithm then fits a generative
model of hologram formation to this cropped hologram. A nonlinear least‐squares fit requires an initial guess, which can
be informed by experimental expectations, and returns the best‐fit parameters and their uncertainties. In the hybrid
approach, a machine‐learning module first estimates the parameters, and a fitting module then refines these estimates
using the parameters from the machine‐learning module as the initial guess to the fit.
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objects like dimpled spheres95, protein aggregates108,112, colloidal aggregates113,112, and dimers

of colloidal spheres114. The advantage of using a single-sphere approximation to model these sys-

tems, compared to a more realistic model, is that the single-sphere model can be fit more rapidly to

the data. The speed of fitting makes it particularly useful for high-throughput applications, such

as industrial quality assessment and process control112, wastewater treatment115 and slurry analy-

sis108,116, in which particle size and composition must be determined continuously in real time.

Where analysis speed is not the primary concern, Bayesian parameter estimation can yield more

detailed information on uncertainty and can more easily incorporate prior information than non-

linear least-squares fitting. A nonlinear least-squares fit yields a single set of parameters that best fits

the data, while a Bayesian analysis yields the posterior probability density (posterior) of all possible

combinations of parameters. Peaks in the posterior correspond to sets of parameters that fit the data

well and are not excluded by any prior information. The prior information might include a previous

calibration of the particle size distribution or the anticipated refractive index of the material. The

width of a peak in the posterior characterizes the uncertainty of the parameter estimates.

The Bayesian approach can also determine marginalized uncertainties (Figure 2.4), which ac-

count for correlations between parameter estimates99. For example, the best-fit particle size is typi-

cally correlated to the axial position, since both affect the fringe spacing. If one cares only about the

particle size, one can marginalize — or integrate out— the axial position, effectively incorporating

its correlations into the uncertainty of the size estimate. Marginalization yields realistic uncertain-

ties. It is particularly useful for fundamental studies that test theories of dynamics or interactions,

and for applications that have specified tolerances — for example, on particle size.

More complex generative models can be used for non-spherical specimens. Exact solutions to

Maxwell’s equations exist for spheroids, ellipsoids, spherocylinders, coated spheres, and small collec-

tions of spheres117. There are also numerical models for these shapes and for many others, includ-

ing those with no exact solutions68. Generative models for these specimens, like models for single
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spheres, calculate the scattered field and simulate its interference with a planar reference wave. But

models of non-spherical specimens have additional parameters such as shape, orientation, or multi-

ple refractive indices and radii. Consequently, it takes more time to fit such models to the data.

Generative models can also account for the effects of the microscope’s optical train. The single-

sphere model approximates the scattered field poorly when the particle is close to or below the focal

plane. The inaccuracies of the model therefore limit the depth of field available for particle track-

ing. To circumvent this problem, Leahy and coworkers modeled the effects of an objective lens on

the hologram of a spherical particle and then fit this model to data. They found that for a 2.4 μm

sphere imaged with a water-immersion lens, the region of accurate tracking increased by a factor of

two relative to a lens-free model118. Martin and coworkers showed that extending this model to in-

corporate the effects of spherical aberration, a common aberration in optical microscopy, increases

the accuracy of particle characterization81. These lens models work with scattering models for either

spherical or non-spherical objects. For non-spherical objects, they are slow because they must nu-

merically integrate the scattered field to calculate the effect of the objective119. For spheres, they are

quick because the integral can be analytically simplified.

A Bayesian approach is useful for more complex models because it can account for the many ways

a model might fit the data. Consider a capsule-shaped bacterium that has a small shape asymmetry

between its head and tail. Even if the generative model includes this asymmetry, fitting might not

unequivocally determine the bacterium’s orientation from the hologram. In the presence of noise,

both orientations might fit the data equally well. In this case, the posterior would show two modes,

one for each orientation, accurately reflecting the uncertainty in the measurement. This uncertainty

can then be propagated to other quantities. If prior information excludes one orientation— for

example, if the bacterium is swimming in a known direction— this information would be reflected

in the posterior, which would have a single peak.

For the Bayesian approach, we use Markov-chainMonte Carlo (MCMC) methods120 to cal-
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culate the posterior probability and to obtain marginalized uncertainties. SomeMCMCmethods

require a good initial guess, which can be obtained using algorithms such as covariance matrix adap-

tation evolution121. Other methods, such as HamiltonianMonte Carlo122 and parallel tempered

Markov-chainMonte Carlo sampling123, do not require a good initial guess. We use these methods

to efficiently explore the high-dimensional parameter spaces of complex models.

The choice of generative model depends on the experimental aims. When the aim is to track a

spherical object in 3D, we recommend a generative model that includes lens effects. With such a

model, one can fit holograms above and below the microscope focal plane. When the aim is to char-

acterize the properties of spherical objects, we recommend using a generative model that accounts

for spherical aberration. Such a model enables more accurate quantification. When the aim is high-

throughput characterization, we recommend using a single-sphere approximation, which allows

real-time analysis. One rarely has to write the generative model from scratch. Open-source packages

such as HoloPy124 and pylorenzmie include generative models for different types of particles and

lens effects. They also include nonlinear least-squares andMCMCmethods to fit these models to

data. Tutorials are available for HoloPy and pylorenzmie.

2.2.2 Machine learning analysis

Machine learning offers alternatives to conventional algorithms for feature identification125,126,

particle tracking127, and quantitative hologram analysis58,65,66. As with the generative modeling

approach, the aim is to determine an object’s position and properties directly from its hologram.

But instead of modeling the physics of image formation, convolutional neural networks (CNNs) or

support vector machines (SVMs) recognize, classify, or characterize objects based on training data.

In general, machine-learning approaches work well on problems with many degrees of freedom;

they recover low-dimensional solutions that classify or characterize the data128. For holography in

particular, machine learning approaches are well-suited to problems where generative modeling is
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computationally expensive, such as characterizing particles in a high-throughput experiment.

We use machine-learning approaches to tackle three types of analysis problems in holography:

localization— estimating the hologram’s center and extent in the field of view93,94,129; property

estimation— characterizing the object’s refractive index, diameter, and axial position92,130; and clas-

sification— differentiating and labeling the structure of the particle131. Combining the modules

used for each of these analysis steps results in a full end-to-end analytical pipeline for holograms94.

Each of these three tasks requires training a model. Training consists of feeding holographic im-

age data with known parameters — such as known particle size and position—to the model, which

learns to recognize patterns in the data and the parameters. In many machine-learning applications,

one must gather and manually annotate training data. The cost of human labor in this process lim-

its howmuch training data can be produced, and thus reduces the model’s accuracy. The applica-

tion to holographic microscopy has an advantage because the generative models can rapidly generate

large amounts of properly annotated training data.

The amount of training data needed for an analysis task depends on the size of the parameter

space and the desired precision of the classification. For the training data to span the range of inter-

estR(pj), where pj is one parameter in a set ofM coupled parameters, and Δpj is the desired resolu-

tion of that parameter, the number of training elements must scale as

N ≤
M∏
j=1

R(pj)/Δpj, (2.2)

where the upper limit corresponds to calculating every possible solution. For non-spherical objects,

the training data must span all possible orientations, positions, sizes, and refractive indices. Sam-

pling approaches can reduce the number of elements below the upper bound.

To better match experimental conditions, one can intentionally degrade the simulated holograms

with either uniform Gaussian noise94 or noise directly extracted from the experimental holograms,
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including both camera noise and time-varying fluctuations131. Adding noise prevents the model

from overfitting experimental data, thereby improving the accuracy of the results94,131.

Training involves optimizing the parameters of the model to accurately fit the labeled training

data. A variety of optimizers are available, including Adam132, root-mean-square propagation,

and stochastic gradient descent133. Activation units such as ReLU enable the model to learn com-

plicated functions and facilitate rapid training134. In our experience, training speed is limited by

how quickly training data can be generated, though that process can easily be parallelized and is a

one-time cost. With current computing clusters, we can generate data and train a model in a few

hours131.

The first step in hologram analysis is localization, which involves finding the regions of interest in

a hologram that correspond to particular objects, as shown in Figure 2.4. CNNs are particularly well

suited for object detection and localization92,94,135. We first train the CNN on synthetic holograms

with variable numbers of particles. The CNN then takes a grayscale image input and returns a set

of cropped images centered on each particle, along with the estimated parameters of the hologram

center, xp and yp, and extent of each detected feature. We can then use the number of identified

features to measure particle concentrations or pass each cropped hologram to another module for

further analysis.

Machine-learning algorithms are both more accurate and more robust than conventional object

detection algorithms83,126, yielding much lower rates of false positive and false negative detections.

The localization algorithm used by Altman and coworkers94, for example, missed fewer than 0.1%

of simulated holograms across a wide range of particle sizes, refractive indexes, and positions. By

contrast, conventional algorithms missed up to 40%. This ability to detect particles over wide re-

gions of the parameter space is necessary for robust, unattended particle tracking and characteriza-

tion.

After localizing and cropping the hologram, we use other machine learning systems, such as
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CNNs94,130 or SVMs92, to estimate the properties of the objects. First, we scale the block of pix-

els identified in the localization stage down to a standard size, which enables the algorithm to ac-

commodate holograms with different extents in the camera plane. The network then reduces the

dimensionality of the data until it outputs values for the particle properties, including diameter dp,

refractive index np, and axial position zp.

Although the generative modeling approach yields more precise and accurate property estimates,

machine learning is faster and more flexible94. End-to-end processing of a full-frame hologram takes

30 ms or less94. In addition, machine-learning models require little tuning or prior knowledge of

the system, and they are more resilient to artifacts that can hinder the performance of generative

models94.

Machine-learning methods can also classify the structure of a specimen. For example, CNNs

can recognize and differentiate clusters of colloidal particles bound by short-range attractions131.

Because the range of the attraction in such clusters is only about 10% of the particle diameter, stan-

dard optical microscopy techniques cannot easily distinguish bound and unbound particle pairs.

Furthermore, the computational cost of fitting a model to the hologram is high. Klein131 instead

detected differences in cluster configurations using a standard, pretrained CNN image classifier136

that was retrained with simulated holograms augmented with experimentally extracted noise. The

retrained CNN extracted hierarchical features from the hologram and classified them to determine

the configuration of particles. Klein found that after including experimentally extracted noise in the

training data, the retrained CNN could differentiate six different ground states of a seven-particle

cluster — including two states differing by only one pair of bound particles — with 60-80% accu-

racy.

A free, open-source software94 —Characterizing and Tracking Colloids Holographically (CATCH)

— is available for end-to-end analysis of holograms from spheres and other particles that can be use-

fully modeled as spheres. A tutorial is available. For other applications, models must be built and
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trained. However, the architecture of the neural network does not need to be rebuilt for each prob-

lem; instead, existing machine-learning frameworks for image analysis can be used131.

2.2.3 Hybrid Approaches

Current machine-learning methods for analyzing holograms are fast and robust, but not as precise

or accurate as generative modeling approaches. Conversely, generative modeling approaches are

highly precise and accurate, but incur higher computational costs than machine-learning methods.

A hybrid approach offers the best of both worlds: fast, automated analysis with high precision.

A hybrid analysis pipeline begins with a machine-learning stage. From a full-frame hologram, a

trained network automatically localizes and crops holograms corresponding to individual objects.

It then estimates their properties, which might include their refractive indices, diameters, and axial

positions. In a second stage, an algorithm fits a generative model to each cropped hologram, using

the machine-learning estimates as initial guesses.

Machine learning eliminates the need for human input to the fitting routine. The algorithm

determines the number of objects in the field of view, the extents of their holograms, and the initial

guesses required to fit the model to the data. This hybrid approach also enables fully parallel analysis

of time-series data. In a generative modeling approach, one usually derives initial guesses for each

frame in a time-series from the best-fit parameters of the previous frame. Consequently, the frames

must be analyzed sequentially. But the machine-learning approach provides initial guesses for all

frames, which one can use to fit generative models to all frames in parallel.

In principle, machine-learning approaches could also select the appropriate generative model by

classifying the structure and shape of the specimen. Such an approach could automate the entire

hologram-analysis pipeline.
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2.3 Applications

The direct analysis of holograms has enabled new, high-precision measurements of colloids, soft

materials, and biological systems. In this section, we highlight a few examples.

2.3.1 Colloidal dynamics and self-assembly

The precision enabled by the generative modeling approach was crucial to discovering an unex-

pected feature of colloidal systems. Since the early 20th century, it was known that micrometer-sized

solid particles could stick irreversibly to the interface between two fluids138. This phenomenon,

driven by surface tension, is the basis for making the solid-stabilized Pickering emulsions now used

in foods139, oil recovery140, and many other applications141,142. The interface can also serve as a

scaffold that guides the self-assembly of these colloidal particles143. Until recently, it was assumed

that the particles would approach the interface, breach it, and then immediately reach an equilib-

rium position, as shown in Figure 2.5a.

Holographic microscopy showed that, contrary to initial assumptions, the particles take a long

time to relax to equilibrium after they breach the interface. Kaz, McGorty, and coworkers11 used ra-

diation pressure to push a particle upward to a planar oil-water interface while measuring its height

using a holographic microscope. By fitting a single-sphere generative model to the holograms, they

were able to measure the height to nanometer-scale precision on millisecond time scales (Figure

2.5a). With this combination of high spatial precision and high temporal resolution, they observed

the motion of the particle immediately after the breach and showed that it scales logarithmically

with time (Figure 2.5a). The long duration of the measurement allowed them to observe this scaling

over multiple decades and enabled comparison with theory. The logarithmic behavior is a signature

of pinning and depinning of the three-phase contact line on the particle, which leads to surprisingly

long relaxation times— on the order of months for a micrometer-scale particle.
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Figure 2.5: a) Diagram of a colloidal particle approaching and breaching an interface between two fluids (left). Plot
showing the position of a particle before and after the breach (middle). The high‐precision tracking of holographic
microscopy shows that the particles relax logarithmically in time to equilibrium (right). Each curve corresponds to a
measurement of a single particle (data from Kaz, McGorty et al. 11). b) Fitting a generative model to holograms of a
six‐particle cluster of interacting spherical particles reveals transitions between states. The raw hologram is shown
alongside the best‐fit hologram (left). The results of the fits quantify the evolution of the cluster structure, represented
by the second moment of the mass distribution. The full structures are shown as ball‐and‐stick models for four time
points highlighted in orange (figure adapted from Perry et al. 137). c) A hologram of a single E. coli bacterium (left) shows
asymmetry in the fringes. Fitting a generative model of a spherocylinder (middle) to this hologram yields estimates
of the orientation and position of the bacterium as it swims. The high positional and angular precision reveal a helical
wobble, clearly distinct from Brownian motion, in the swimming pattern, shown in the 3D plot (right), adapted from
Wang et al. 46.
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Later holographic microscopy experiments showed that this long-time relaxation is common to

many different types of colloidal particles12,13,14. Wang and colleagues67 showed that when ellip-

soids breach an interface, the particles rotate far more slowly to equilibrium than previously pre-

dicted. They revealed this motion by fitting a generative model for scattering from an ellipsoidal par-

ticle as a function of orientation and position. These studies illustrate how the generative-modeling

approach leverages the strengths of holographic microscopy: its acquisition speed, high dynamic

range, and sensitivity to the 3D position and orientation of the particle.

Holographic microscopy is also well suited to answer questions about how colloidal particles

interact and diffuse. The structure and dynamics of these systems are difficult to determine with

standard optical microscopy because the interactions are so short ranged— a few tens of nanome-

ters — and because the particles diffuse in three dimensions. Using holographic microscopy, Fung

and coworkers imaged the 3Dmotion of pairs of interacting colloidal particles with high tempo-

ral resolution. They resolved the translational, rotational, and vibrational motion of the particles

— and their interaction potential — by fitting generative models that account for scattering from

multiple spherical particles, including near- and far-field couplings between the scattered fields69,144.

Perry and coworkers137 used a similar approach to infer the 3D dynamics of self-assembled colloidal

clusters as they transitioned between free-energy minima (Figure 2.5b). The structure and dynam-

ics of these systems can give insights into the first stages of crystal growth and the mechanisms of

self-assembly in colloidal systems. The precision of this measurement was sufficient to resolve tran-

sitions between two free-energy minima for a six-particle cluster, which was not possible with wide-

field or confocal optical microscopy.

2.3.2 Microrheology and stress measurements

Measurements of colloidal dynamics can not only reveal information about the physics of interact-

ing systems, but can also reveal information about materials in which colloidal particles are embed-
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ded. In microrheology, for example, one infers the viscoelastic properties of a material by measuring

the Brownian motion of embedded tracer particles145. In traction-force microscopy, one infers the

forces exerted by living cells by measuring the motion of particles embedded in an elastic substrate

that deforms as the cells move on it146. In both cases, one needs to detect small displacements of the

particles. Typically, a confocal or a standard widefield optical microscope is used, but a holographic

microscope has advantages.

Microrheological measurements benefit from the higher precision of the holographic micro-

scope. Modeling and fitting a time-series of holograms reveals the motion of tracer particles with

nanometer-scale precision. The diffusion coefficient69,144,147 of the particles and the viscoelastic

properties of the medium can then be inferred from this 3Dmotion data. Cheong and cowork-

ers111 used this approach to precisely measure the complex viscoelastic moduli of polysaccharide

gels, obtaining accurate measurements in micrometer-scale samples without mechanical loading.

Traction-force measurements benefit from the depth of field of the holographic microscope.

Makarchuk and coworkers148 obtained the full 3D displacement map of tracer particles without

scanning the focus of the microscope. They also measured the displacements to nanometer-scale

precision. Though their technique did not use a generative model, it did involve directly analyz-

ing the hologram fringes to measure the forces exerted by colorectal cancer cells. The application of

holography to traction-force microscopy could enable both higher time resolution and characteriza-

tion of forces on stiffer substrates, where the embedded particle motion is subtler.

2.3.3 Microorganisms and organelles

Holographic microscopy can also measure the properties and motion of biological systems. Fluo-

rescence microscopy is commonly used for such systems because fluorescent labeling offers excellent

contrast for the object of interest. But labels can also interfere with biological systems. Furthermore,

photobleaching limits the number of detected photons and hence the duration of experiments149.
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Because holographic microscopy is based on scattering, the number of photons that can be detected

is unlimited. Instead, the precision and speed are limited by the scattering strength of the sample.

Biological systems tend to scatter weakly because their refractive indices are usually close to the index

of water (1.33). The refractive indices of living cells, for instance, are around 1.38 or smaller150,151.

However, even weakly scattering microorganisms such as E. coli can be seen under the holo-

graphic microscope. The small scattering cross-section of an individual E. coli bacterium—which

is about 2 μm long and has a refractive index of 1.388152 —makes it difficult to see in a brightfield

optical microscope. Wang and coworkers46 were able to use holographic microscopy to capture the

3D swimming motion of these bacteria, including its tumbling, as shown in Figure 2.5c. To obtain

this information, they first modeled a bacterium as a homogeneous spherocylinder. They then fit a

generative model of scattering from a spherocylinder to the data. This technique allowed them to

measure both the position and orientation of individual bacteria as a function of time. Using the

high acquisition speed of the microscope, they resolved even the wobble of the bacterium during its

run-and-tumble motion, as shown in Figure 2.5c.

Holographic microscopes can also image vesicles, another class of weakly scattering systems that

are biologically important. Vesicles are enclosed lipid bilayers that serve as models for organelles.

They are used to deliver drugs153, study the origins of life154, or create artificial cells155,156. In these

applications, the solute loading of the vesicle and its motion must be tracked over time. This is a

non-trivial task because bilayer is thin (about 5 nm). Consequently, the vesicle has a small scatter-

ing cross-section157. But when the vesicle is filled with, for example, a sugar solution, its scattering

cross-section increases, and interference fringes become visible under the holographic microscope, as

shown in Figure 2.6a. One can fit a generative model for a core-shell spherical particle to holograms

of such filled vesicles — where the core is the filling solution and the shell is the thin outer layer of

lipids. The fit reveals the vesicle’s refractive index and size, which can be used to quantify vesicle

loading158.
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Figure 2.6: Property estimation and characterization. a) Hologram of a vesicle encapsulating 500 mM sucrose, along‐
side the best‐fit hologram from a core‐shell model and a 3D rendering of the best‐fit vesicle, shown with a cut‐away
of the enclosed fluid (data and fit from Tran et al. 158). b) Hologram of a spherical bead that binds target molecules,
alongside a best‐fit hologram from an effective‐sphere model, which treats the substrate bead and molecular layers as a
single homogenous sphere. The fit defines the effective diameter and effective refractive index (right) (data and fit from
Altman et al. 159). c) Results from the effective‐sphere analysis for avidin binding to biotinylated polystyrene spheres
(adapted from Altman et al. 159). Plots show the distributions of inferred particle diameters ρ(dp) and refractive indexes
ρ(np) from control beads (blue), probe beads after binding (orange), and differences. Binding causes a statistically
significant shift in ρ(dp) on the order of a few nanometers. (d) Inferred parameters for a heterogeneous, four‐particle
mixture from a generative modeling approach (left), a machine‐learning approach (middle), and a hybrid approach (right).
The results show how well each method differentiates components of the mixture, which contains two sizes each of
polystyrene and silica spheres. Ovals mark 99% confidence intervals of the generative modeling results. Color denotes
the relative probability density of the parameters, P(dp, np) (adapted from Altman et al. 94)
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2.3.4 Detection of molecules

Macromolecules, such as enzymes or proteins, are too small to see with a typical optical microscope

because they don’t scatter enough light. One can detect them by fluorescently labeling them and

measuring their fluorescence when they bind to a functionalized bead. As in other fluorescent mea-

surements, labeling adds a step to the detection process, and labels can interfere with binding160,161.

Holographic microscopy offers an alternative approach that does not require fluorescent label-

ing. As in the fluorescence assay, one first functionalizes micrometer-scale probe beads with surface

groups that bind specifically to targets of interest, such as virus particles, antibodies, or other pro-

teins. One then records holograms of individual particles and fits these holograms with an effective-

sphere generative model. Fitting reveals binding-induced changes in the inferred parameters162. The

observed shift in effective diameter, for example, can be related to the coverage of bound targets.

This approach allows both rapid fitting and high sensitivity. When the molecules bind, they in-

crease the effective diameter of the beads by a few nanometers, a difference that the holographic mi-

croscope can detect163. The resulting fits are precise enough to isolate changes in population distri-

butions as the target molecules bind, enabling applications such as fluorescence-free immunoassays,

as shown in Figure 2.6b and c159,164.

The validity of the effective-medium approach has been assessed in simulations based on the

discrete-dipole approximation68,70,71,165. This approximation treats an inhomogeneous object as

a set of point dipoles and allows computation of the scattered field of arbitrarily shaped objects.

These simulations also show that one should use a low-index material for the probe bead, relative

to the refractive index of the molecular coatings, to observe the greatest shift in effective diameter

after binding. Future experiments might therefore employ a silica probe bead, with refractive index

np = 1.4, instead of polystyrene, with np = 1.6.
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2.3.5 Characterizing industrial dispersions

For many applications involving industrial dispersions, evaluating the efficacy and safety of the

product requires detecting and differentiating multiple species of particulate contaminates and

measuring their relative concentrations in dispersion. Hologrammicroscopy combined with the

effective-sphere analysis approach is especially well suited to such applications. This method can an-

alyze multiple particle species in wastewater or industrial slurries with high throughput108,112,116. In

these applications, contaminants or large aggregates appear as outliers in the continuous, real-time

analysis of particle size and composition.

This method also has applications in the monitoring and development of biopharmaceuticals.

The active ingredients of these complex medicines are proteins that can aggregate, compromis-

ing the medicine’s effectiveness and potentially causing harmful immune reponse. Winters and

coworkers108 used holographic microscopy and an effective-sphere model to successfully differen-

tiate multiple components of a model biopharmaceutical formulation, including silicone-oil emul-

sion droplets, fatty-acid clusters, and potentially dangerous protein aggregates. While many of these

populations have a wide polydispersity in size, they can be distinguished by their common refrac-

tive index, indicating their similar composition. Characterizing the particles’ size and composition

differentiates the populations of these different species with high throughput and allows their con-

centrations to be measured accurately. Monitoring the concentration and composition of particles

dispersed in biopharmaceutical products is useful for guiding product formulation, performing

quality assurance during manufacturing and assessing product stability.

2.4 Reproducibility and data deposition

Reproducible, quantitative analysis with holographic microscopy requires recording and disclosing

experimental metadata, storing large data sets and reporting the prior probabilities and techniques
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used in the analysis. The metadata are essential for interpreting recorded holograms. Metadata in-

clude both laser settings — such as wavelength, polarization and intensity — and imaging settings

— such as pixel spacing, frame rate and exposure time. To determine the pixel spacing, we image a

graticule, and then divide the distance between markings by the number of pixels spanning that dis-

tance. We recommend recording all metadata in the same file as the hologram and maintaining these

metadata throughout hologram processing and analysis. Both HDF5 and TIFF files support storing

metadata alongside data.

Some video recording formats are unsuitable for quantitative holographic imaging because they

use lossy encoding to reduce file size. Lossy formats introduce artifacts into recorded images that

can alter extracted results. The data should instead be saved as an uncompressed video or in a format

that uses lossless compression, such as HDF5 or TIFF.

To store a time series of recorded holograms, which has a size typically in the order of gigabytes,

we recommend using standard, non-proprietary formats such as HDF5. HDF5 has several advan-

tageous features for holography: it is designed for large data sets, it can store data in a compressed

format and implementations such as the h5py Python package enable HDF5 files to be loaded piece-

wise, so that they do not consume all of the computer’s RAM.

Equally important to experimental metadata are parameters associated with hologram analysis.

It is essential to disclose all assumptions, including the generative model and the prior probabilities,

which are probability distributions in a Bayesian analysis but could also take the form of bounds

placed on parameters. Algorithmic parameters should also be disclosed, such as the convergence cri-

teria for non-linear least-squares fitting, the number of chains for MCMC sampling or the number

of temperatures for parallel temperedMCMC sampling. In a machine-learning framework, the un-

derlying algorithm architecture and the training data should be reported. One can disclose all of this

information by creating public repositories for both data and analysis code.
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2.5 Limitations and optimizations

Limits on the information that can be inferred from holograms are both physical and practical. The

physical limitations do not depend on the analysis technique used. They are based on howmuch

information is present in the hologram. For example, when the particle approaches within roughly

5 μm of the focal plane of the objective, the fringes in its hologram become too finely spaced for the

camera to resolve81,118. Conversely, when the particle moves too far from the focal plane, its fringes

become increasingly faint and are obscured by image noise. Even under ideal imaging conditions,

some combinations of particle parameters produce nearly indistinguishable holograms, which can

lead to unreliable parameter estimation166. Furthermore, weakly scattering objects introduce degen-

eracies in the generative model, making it difficult to determine, for example, the size and refractive

index of the object independently. In these cases, a Bayesian inference approach with a generative

model will report appropriately larger uncertainties. Finally, the presence of many objects in the

specimen can make it more difficult to extract information from the hologram, because fringes from

other objects disrupt the fringes of interest. Machine-learning methods can be used to isolate clean

holograms of the object of interest167.

2.5.1 Generative modelling

The main practical limitation of the generative modelling approach is that one must know what

one is looking at before modelling it, a limitation not faced by reconstruction-based analyses. More

specifically, the generative model must accurately describe the shape, structure and composition of

the specimen. It must also accurately describe how its hologram is formed. Ignoring physical effects,

such as strong aberrations, leads to systematic characterization errors81. Additional parameters in

the model, such as the field rescaling parameter α, can improve the fit but may be difficult to inter-

pret. Furthermore, even in the most complex models, the inferred parameters can depend on the
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distance between the object and the focal plane. Martin et al.81 found that when the particle was

closer than about 10μm to the focal plane, the inferred refractive index of the particle had a variation

of 6%, whereas the inferred diameter had a variation as high as 20%. Such results may indicate that

the model does not account for some physical effects. To overcome these limitations, future work

should focus on more descriptive and accurate generative models.

Another practical limitation is the computational cost of fitting. Fitting the more complex gen-

erative models, such as those describing the scattering from a cluster of many spherical particles, can

take hours of CPU (central processing unit) time for a single hologram. By contrast, the hologram

of a single sphere can be computed in under a millisecond on a desktop computer. The computa-

tional cost of detailed analysis may be prohibitive for certain experiments, such as those involving

long time series or high throughput.

New developments in computing and inference could mitigate these issues. For example, algo-

rithms such as automatic differentiation168,169, variational inference169, and HamiltonianMonte

Carlo122 can accelerate fitting models with large numbers of parameters. Additionally, graphics

processing unit (GPU) and tensor processing unit (TPU) computing frameworks can parallelize the

fitting of highly complex models to time series170.

An alternative is to develop simpler models rather than more complex ones. The effective-sphere

model is an example of a model that makes simplifying yet accurate physical approximations. This

approach can reduce the burden of specifying the detailed shape and structure of the object, and

can sharply reduce the computational cost. The challenge is to determine the appropriate approx-

imation for the problem. To this end, one can test the approximations by running full scattering

calculations using tools such as the discrete-dipole method71.
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2.5.2 Machine learning

Although machine-learning algorithms can performmore robustly over a wider parameter space

than conventional algorithms, they can be inaccurate when their inputs differ too drastically from

their training data. Imprecision in the localization algorithm, which estimates the position and ex-

tents of holograms, can also propagate uncertainty into parameters such as size and axial position94.

The machine-learning approach is also limited by computational speed, although in a different

way from the generative modelling approach. In particular, analyzing data is fast, but training can be

slow because many holograms must be generated to span the parameter space. Altman and Grier94

achieved reliable results with a training set of 104 images, but in the theoretical limit 109 images

would be required to achieve the parts per thousand precision of a generative modelling approach.

Because the training data can be generated and labelled automatically, achieving high-precision clas-

sification is not an intractable problem for spherical specimens. Advances in network architecture

and training protocols for high-precision tracking and characterization of spherical particles may

soon be practical even with modestly sized training sets. But for non-spherical specimens, which in-

clude additional degrees of freedom such as shape and orientation, it may be impractical to generate

and process enough training data for accurate characterization.

Using synthetic data to train machine-learning models has some disadvantages. Experimental ar-

tifacts, such as pattern noise in the camera, can significantly compromise accuracy. To mitigate this

problem, one can either improve the experimental design or modify the models used to generate the

training data. For example, one can measure the camera noise and incorporate it into the generated

holograms131, or generate the training data using models that more accurately describe the artifacts

of the experimental system.
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2.5.3 Hybrid approaches

A hybrid approach can, in principle, overcome the limitations of both the generative modelling

and machine-learning approach. It removes the need for human input or prior knowledge, while

benefiting from the speed of machine learning and precision of fitting. Nevertheless, the hybrid

approach comes with caveats. First, it remains computationally expensive because the generated

training data must span the parameter space. Second, fitting the model requires calculating many

holograms, although we expect fitting times to be reduced if the machine-learning stage provides

a good initial guess. Third, any fundamental inaccuracies and limitations in the generative model

affect the analysis in both stages. In the machine-learning stage, these inaccuracies affect the training

data and, therefore, the parameter estimates. The inaccuracies in these estimates can propagate to

the results of the fitting stage, as the accuracy of the fit can depend on the starting point in parame-

ter space.

2.5.4 More general limitations

It is difficult to know whether the model-based approach and in-line experimental geometry will be

effective for a specimen that differs from the previous examples, or whether a different analysis or

experimental technique could reveal more information. We cannot give specific information on the

ranges of specimen concentration, size, shape or structure for which the approach will yield useful

results. New studies are needed to probe the physical and practical limitations of analysing more

complex specimens. For those interested in using the approach but unsure whether it will work on

a particular specimen, our advice is to try it. The in-line geometry is straightforward to set up, and

open-source software for generative modelling124 and machine learning94 makes it easy to apply the

analysis methods.
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2.6 Outlook

Since its development in the 1940s, holographic microscopy has been repeatedly revitalized by tech-

nological developments. The invention of the laser simplified implementation171; the development

of digital cameras enabled digital reconstruction172; and the advent of computers powerful enough

to compute scattering solutions of microscopic objects enabled direct analysis of holograms173,174.

Recent developments in statistical inference and machine learning enabled the model-based ap-

proaches and precise measurements discussed in this primer.

The future of model-based analysis depends on continued advances in inference and computa-

tion. Removing limitations, such as the variation of parameter estimates with defocus, demands

more physically accurate generative models. These models must also be more computationally ef-

ficient. Currently, it takes days of CPU time to fit a complex generative model to a hologram of a

two-sphere cluster if the model includes the effects of a lens119. Although processing power will

likely increase, there is still a need for numerical and algorithmic optimization. Real-time analysis

of holograms requires inference algorithms that are more efficient. These algorithms must also be

resilient to the complications of real experimental systems, such as variations in brightness and loss

of fringe information near the focal plane.

Machine-learning techniques are poised to meet many of these challenges. CNNs have quantified

the properties of microscopic objects from real holograms taken under various experimental con-

ditions, at speeds nearly 100 times faster than conventional inference-based techniques. However,

these property estimates are not as precise as those obtained with a fitting approach, and they lack

the uncertainty estimates provided byMCMC sampling. Furthermore, estimating properties such

as the shape, structure and orientation of more complex specimens requires algorithms trained with

a large amount of data. Machine-learning approaches rely on generative models to produce these

training data. The future of the field will likely depend on the development of both approaches in
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parallel.

We would go further; we think the future of holographic microscopy depends not only on the

parallel development of generative modelling and machine learning but on their integration. We

envision a microscope that would send its holograms directly to a system that could guess what kind

of objects made them, analyse the holograms and report any parameters and uncertainties that the

researcher specifies. The specimen might be a living eukaryotic cell, and the objects might be its

organelles. Behind the scenes, a hybrid approach would be at work. A machine-learning module

would determine the number, shapes and structures of objects that made the hologram; estimate

the properties of these objects; and select a generative model for each. A fitting module would then

report precise estimates and marginalized uncertainties on parameters of interest, using the results

from the machine-learning module as initial estimates.

The development of these new algorithms could be synergistic with experimental design. In

the broad field of quantitative phase microscopy59,175,176,177, researchers leverage various experi-

mental approaches — off-axis beam geometries, phase-shifting elements, coherence control and

multi-wavelength apparatus, among others — to acquire more information and more sensitive mea-

surements of complex specimens. Meanwhile, interferometric scattering techniques have pushed the

detection limit of holographic microscopy to the single-molecule scale178,179. Generative models are

starting to appear for these techniques180. The development of generative modelling and machine-

learning approaches could drive further advances in experimental techniques, and vice versa.

This vision is not limited to holographic microscopy; it is a vision for where microscopy in gen-

eral may be headed. As we noted in the introduction, a hologram is not easy for the human eye to

interpret. It is difficult to visually recognize even a specimen’s shape from its hologram, let alone its

size or orientation. But the interference fringes that make the hologram impenetrable to human vi-

sion contain a wealth of information about the specimen. That information is most easily extracted

and quantified by an algorithm. The same principle can be applied to any microscopy technique.
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By removing the need for humans to directly interpret the image, we can design microscopes that

maximize the amount of information contained in the image. Although the resulting images may

not appeal to the eye, their true appeal lies in what they reveal about the specimen.
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The combination of digital holographic microscopy, forward modeling, and statis-

tical inference allows colloidal particles to be characterized and tracked with high precision over a

large depth of field119. In contrast to the traditional method of interpreting holograms by recon-

struction47,181, where the fields scattered by the objected are recovered by physically or numerically

shining light through the recorded hologram, in forward-modeling approaches a scattering theory is

directly fit to a minimally processed hologram65,66. This approach yields estimates of the particle’s

three-dimensional position, index of refraction, and size. The forward-modeling approach has the

advantage that the position and properties of the object can be inferred directly from the hologram,

whereas reconstructions must be further processed to recover this information. When the objects

are spheres approximately as large as the wavelength, their reconstructions often do not resemble

spheres72, making it difficult to precisely extract their positions from the reconstruction. Further-

more, the forward-modeling approach yields estimates of the particle’s index of refraction, which

cannot be directly inferred from a reconstruction. The precision of the quantities inferred from

forward-modeling and fitting, combined with the high acquisition speed of the holographic micro-

scope, make the approach useful for many applications, including microrheology111, visualizing the

dynamics of colloidal clusters144, and studying bacterial swimming46.

However, the most commonly used forward models ignore optical aberrations, which exist in all
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imaging systems. Not modeling such aberrations can lead to systematic errors in the inferred param-

eters. Although many techniques have been demonstrated to correct for the effects of aberrations

and artifacts on reconstructions182,183,184,185,186,187,188,189, there has been little work on account-

ing for these effects in forward models. Recent models do include the phase effects introduced by

an ideal objective lens118,119, but they do not include aberrations in either the objective or experi-

mental setup. Moreover, the effects of aberrations on the accuracy of parameters inferred through

model-based approaches have not yet been examined.

It is important to understand the effects of aberrations because most microscopy experiments are

subject to them. Here, we focus on spherical aberration. Although most high-quality objectives are

corrected for spherical aberration near focus, holographic microscopy is often used to image parti-

cles far from the focal plane, where the aberration may be less well corrected. Furthermore, the in-

terface between a liquid sample and a glass coverslip can lead to spherical aberration when the refrac-

tive index of the objective immersion fluid is not matched to that of the sample medium77. Water-

immersion objectives are therefore used to minimize aberrations when aqueous samples are imaged.

But even with a water-immersion objective, spherical aberration can be introduced by the coverslip

interface. This aberration can be corrected by setting the objective’s correction collar, which adjusts

the position of a movable central lens group within the objective (Figure 3.1a), to the thickness of

the coverslip, which is typically 0.10mm to 0.20mm. If the correction collar is set incorrectly, how-

ever, spherical aberration is induced. Thus, unless the microscopist carefully measures the thickness

of each coverslip—a laborious task when many samples must be imaged—the holograms will likely

be subject to spherical aberration. To maximize the precision of tracking and characterization, we

must therefore consider the effects of aberrations that can be induced by the experimental setup, as

well as those inherent to the objective.

In this chapter, we experimentally examine the effects of spherical aberration on holograms cap-

tured in an in-line holographic microscope and develop a model to describe these aberrations. We
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Figure 3.1: (a) Diagram of the optical train in a typical in‐line digital holographic microscope with an imemersion ob‐
jective with correction collar. Collimated coherent light (red) illuminates a sample chamber consisting of an object in a
medium between a glass slide and coverslip. (b) We treat the optical train as a single effective lens pupil with polar angle
θ, as defined from the optical axis. The object’s position in the object plane is defined by (ρp, ϕp, zp) in cylindrical co‐
ordinates. (c) A measured hologram from a 1.05µm polystyrene sphere sitting 7.5µm above the focal plane, illuminated
with 660nm light. We record the hologram with a water‐immersion lens with a numerical aperture of 1.20 and set the
correction collar to minimize aberration.
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fit this model directly to aberrated holograms and extract information about the particle as well as

the aberrations. This method does not require reconstruction or image processing. We find that

modeling the effect of aberrations improves agreement between the model predictions and the ex-

perimental data, leading to lower residuals between the best-fit holograms and data across levels of

induced aberration. We also find that the inferred parameters do not change as the level of aberra-

tion in the optical train increases. Modeling the aberrations therefore allows one to more accurately

characterize colloidal spheres even if one does not know whether the experimental setup is spheri-

cally aberrated, or by howmuch. The robustness of the fits with this new forward model to aber-

rations, either induced in or inherent to the optical system, could simplify experiments and reduce

systematic errors.

3.1 Effect of spherical aberration on hologram structure

To explore the effects of typical levels of spherical aberration on hologram structure, We image an

immobilized polystyrene microsphere with a reported radius of 1.05 µm (density 1.055 g/mL, index

1.591 at 590 nm, Invitrogen S37500) under varying levels of spherical aberration. To immobilize

the microsphere, we fill an inverted sample chamber with a 0.001% w/v colloidal suspension in a

0.2mMNaCl aqueous solution. The particles then sediment and stick to the slide, likely because

the salt screens any electrostatic repulsion between the sphere and glass. We then reorient the sam-

ple chamber. The particles remain immobilized on the top slide, approximately 150 µm above the

interface between the bottom slide and immersion lens.

The particles are illuminated with a diode laser (660 nm wavelength, 120mW power, Opnext

HL6545MG) driven at 130mA (Thorlabs LDC205C). We use a Nikon Eclipse Ti TE2000 micro-

scope with a water-immersion objective and correction collar (Plan Apo VC 60×/1.20WI, Nikon,

300 µm working distance) and a 1024 × 1024-pixel CMOSmonochrome sensor array (PhotonFo-
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cus A1024) to capture the hologram. Before analyzing each hologram, we subtract the average of

dark-count images taken without illumination and divide the resulting hologram by averaged back-

ground images taken with no particles in the field of view. This image processing differs from the

double-exposure method of reconstruction-based holography, which removes phase shifts and thus

aberrations in the resulting phase-contrast image. We do not attempt to reconstruct the background

to obtain a phase map184. Instead, our processing method removes stray illumination in the optical

train and accounts for non-uniform illumination and artifacts.

We adjust the level of induced spherical aberration by varying the correction collar setting on the

objective. The correction collar on our objective corrects for coverslip thicknesses of 0.13mm to

0.19mm. Setting the collar to the thickness of the coverslip, measured at 0.17mm, minimizes spher-

ical aberration; setting it to the furthest available setting, 0.13mm, maximizes spherical aberration.

At the maximally aberrated setting, we expect aberration in the phase from 0.04mm of glass, which

is the difference between the measured and corrected thicknesses. This difference should induce a

phase shift Δφ between the paraxial and off-axis rays. For a homogeneous material with refractive

index n2 and thickness h embedded in a medium with refractive index n1, Δφ is given by

Δφ = hk (n2 − n1)
[
2
n1
n2

sin2
(
θ
2

)
+ 2 (n2 + n1)

n21
n32

sin4
(
θ
2

)
+ . . .

]
, (3.1)

where k is the wavenumber and θ is the angle of incidence of the off-axis ray190. For a glass layer

(n2 = 1.515) with thickness h = 0.04mm surrounded by water (n1 = 1.33), and at the maximum

angle of incidence set by the numerical aperture of the lens (NA = 1.2), we calculate a maximum

phase shift corresponding to approximately 52 wavelengths. In the above expression, the sin2(θ/2)

term corresponds to defocus, which accounts for 35 wavelengths of phase shift, and the sin4(θ/2)

term corresponds to the primary spherical aberration, which accounts for the remaining 17 wave-

lengths. The higher order terms correspond to higher order spherical aberration. To minimize the
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aberration induced by the coverslip, we correctly set the correction collar to the precisely measured

thickness of the coverslip (0.17mm). In this case, we expect any remaining aberration to be intrinsic

to the optical system, rather that induced by the experimental setup. We note that because high-

numerical-aperture objectives are designed to image objects in the focal plane, they may not be well

corrected for aberrations far from the focus.

To examine how increasing the aberration affects the hologram structure, we record “stacks” of

holograms of the immobilized sphere by sweeping the focus through the particle at three different

correction-collar settings. We then examine the x-z cross-sections of these hologram stacks, where

each section shows the intensity of the hologram through the central fringe (Figure 3.2). The par-

ticle height determines the spacing of the fringes in the resulting hologram, with the fringe spacing

increasing with increasing distance from the focal plane. The x-z cross-sections therefore have a

cone-like structure, with a bright center above the focus and a dark center below. With no spheri-

cal aberration, we expect a single focal point at which the center of the hologram transitions from

bright to dark, which we observe in the cross-section at 0.17mm correction.

As we change the correction collar setting, the increase in aberration introduces several notice-

able changes in the recorded hologram structure. First, oscillations between bright and dark points

appear along the central axis (orange arrows in Figure 3.2), and the number of oscillations increases

as we increase the aberration. Second, we observe an overlap of fringes near the focus. Instead of

converging at the focal plane, the bottom cone structure converges at a point above the focal plane

with increasing aberration, resulting in distortions due to the overlap of the fringes of the top and

bottom cone near the focal plane (green arrows in Figure 3.2). Finally, the position of the focal plane

shifts as the aberration increases, as highlighted in Figure 3.2 by the increasing distance of the focal

planes from the blue dotted line.

These changes in structure are the result of the angle-dependent phase shift due to increasing

spherical aberration. Spherical aberration changes the phase of the off-axis rays. The interference
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Figure 3.2: x‐z cross‐sections of stacks of holograms of an immobilized 1.05µm radius polystyrene microsphere,
taken from 15µm below to 15µm above the focus in 0.25µm intervals at three correction collar settings. Adjusting
the correction collar induces spherical aberration, which results in on‐axis oscillations in brightness (orange arrow),
overlapping fringes close to the focal plane (green arrow), and defocus. The blue line marks the focal plane of the least
aberrated system; all stacks are taken with the lens in the same physical position. The top row of cross‐sections shows
experimental data. The bottom row shows calculations from a model that includes spherical aberration. By changing
a0 in the aberration series (primarily fourth order in the phase deviation), we are able to produce cross‐sections that
capture the distortions in the experimentally observed holograms.

between these peripheral rays and the paraxial rays produces the bright and dark points that we

see in the data; the up-down asymmetry is characteristic of spherical aberration191. The overlap of

fringes as the cone structures do not come to a single point is also indicative of spherical aberration,

as there is no longer a single well-defined focal plane in the presence of these aberrations. Finally, the

observed defocus effect is also characteristic of aberration induced by index mismatch, as described

above.

53



3.2 Modeling the effect of spherical aberration

These results show that spherical aberration caused by small offsets in the correction collar can in-

duce significant changes in the recorded holograms across a wide depth of field. To infer accurate

particle parameters under typical levels of spherical aberration, we need a forward model that ac-

counts for these effects.

To model the effects of aberration on a recorded hologram, we build upon the treatment for

modeling an unaberrated lens from Leahy, Alexander, and coworkers118. In an unaberrated sys-

tem, all rays emitted from a point source on the focal plane come to a focus at a single point on the

detector. By Fermat’s principle, these rays traverse the same optical path length through the imag-

ing system. In an aberrated system, the rays do not come to a focus at a single point, and therefore

the phase of each ray differs. These phase aberrations can be quantified by the deviation Φ of each

ray’s phase from its ideal value, as measured on the lens pupil. In the presence of general aberrations,

Φ depends both on the position on the lens pupil and on the source’s in-plane position191. For

spherical aberration, however, Φ is a function of the polar angle θ only, defined in Figure 3.1b. For

incident light polarized along the x-direction x̂ of the detector plane, propagating the fields through

the optical train yields the incident (Ein) and scattered fields (Esc) on the detector:

Ein ∝ −E0eiΦ(θ)x̂ (3.2)

Esc(ρp, ϕp, zp) ∝
E0
2

{[
I0(kρp, kzp) + I2(kρp, kzp) cos(2ϕp)

]
x̂

+ I2(kρp, kzp) sin(2ϕp)ŷ
}
,

(3.3)

where (ρp, ϕp, zp) is the position of the particle in cylindrical coordinates, as shown in Figure 3.1b,

and ŷ is the unit vector along the y direction. We have omitted phase and amplitude factors com-

mon to both the incident and scattered fields. In the presence of aberrations, the integrals I0 and I2
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are defined as

I0(u, v) =
∫ β

0

[
S⊥(θ) + S∥(θ)

]
J0(u sin θ)eiv(1−cos θ)eiΦ(θ)√cos θ sin θ dθ (3.4)

I2(u, v) =
∫ β

0

[
S⊥(θ)− S∥(θ)

]
J2(u sin θ)eiv(1−cos θ)eiΦ(θ)√cos θ sin θ dθ, (3.5)

where Jn is the Bessel function of the first kind of order n, S⊥ and S∥ are the components of the far-

field scattering matrix given byMie theory, and β is the acceptance angle of the lens.

In the unaberrated-lens model118, Φ is constant and I0 and I2 are changed only by a phase fac-

tor eiΦ imparted by the lens. In the presence of spherical aberrations, Φ is a general function of

θ2, and therefore Φ is generally Taylor-expanded as an even polynomial in θ. The constant term in

this polynomial corresponds to piston, which is irrelevant for in-line holographic microscopy be-

cause it affects the incident and scattered fields identically and therefore does not alter their interfer-

ence. The quadratic term corresponds to defocus, which is degenerate with zp. Thus, we represent

Φ(θ) as a function (1 − cos θ)2 [a0 + a1P1(1− cos θ) + a2P2(1− cos θ)], where Pℓ are Legen-

dre polynomials and the coefficients aℓ are parameters that describe the level of aberration. Since

1 − cos θ = θ2/2 − θ4/24 + . . ., this parameterization excludes piston and defocus aberrations.

The coefficients a0, a1, and a2 allow us to account for fourth- through eighth-order aberrations

in the phase (or third- to seventh-order in the ray displacements). While the coefficient a0 primar-

ily describes fourth-order spherical aberration, the coefficients a1 and a2 describe a mix of fourth-,

sixth-, and eighth-order aberrations. We choose to parameterize Φ in terms of Legendre polynomi-

als to make it easier to fit the aberration coefficients to data; a parameterization in terms of ordinary

polynomials leads to covariances between the inferred expansion coefficients.

With this model for spherical aberrations, we are able to generate holograms that capture the

aberrated structure observed in the data. We generate x-z cross-sections at evenly spaced intervals

as zp moves through the focal plane (Figure 3.2, bottom), using parameters based on the manufac-
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turer’s specifications of the microsphere imaged in the top row. When the aberration coefficients are

set to zero, we recover the expected unaberrated structure: a double cone that comes to a single fo-

cus where the hologram center transitions from bright to dark. When we increase the aberrations by

increasing a0 (corresponding to primarily fourth-order phase aberrations), we reproduce the effects

we observe in the aberrated data, including the on-axis oscillations in brightness and the overlapping

fringe pattern near the focal plane. Because our parameterization of the aberration function sepa-

rates defocus from spherical aberrations, we also adjust zp in the generated holograms to account for

the defocus in the data.

The model does not capture all of the structure seen in the cross-sections, particularly in the re-

gions near the focal plane. For example, the model does not accurately reproduce the intensity and

structure of the dark region below the focus. These discrepancies suggest the need to model other

effects, including perhaps other types of aberrations. Nonetheless, our results show that accounting

for spherical aberration captures many of the aberration-dependent distortions in hologram struc-

ture that can arise under typical experimental conditions.

3.3 Effect of spherical aberration on particle characterization

To determine how spherical aberrations affect the accuracy of particle characterization, we fit holo-

grams of a single immobilized 1.05 µm-radius polystyrene sphere at varying coverslip corrections,

recorded from 30 µm above to 30 µm below the focus in 0.25 µm intervals. We fit both the aberrated-

lens model described above and the unaberrated-lens model118 (hereafter called the “lens model”) to

the measured holograms to infer the particle radius, refractive index, and position, as well as the ob-

jective acceptance angle β and the field rescaling parameter α. For the aberrated-lens model, we also

fit three coefficients of the aberration series, a0, a1, and a2 (see Section 3.4 for details on how we

choose the order of the series required to describe aberrations in the data). We use a Bayesian frame-
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work, and to avoid local minima in the posterior probability density, we use a combination of non-

linear least-squares fitting, covariance matrix adaptation evolution strategy, and parallel-tempered

affine-invariant Markov-chainMonte Carlo sampling.

We find that the aberrated-lens model produces consistently better fits to the data than the lens

model, as measured by the sum of squared residuals χ2 (Figure 3.3). When the particle is within

5 µm of the focal plane, fitting becomes inconsistent for both models, and the residuals between

the data and best-fit holograms are large. When the particle is 30 µm from the focal plane, both

models produce fits with comparable residuals. As the microsphere approaches the focus, however,

the residuals found by the lens model increase significantly. Furthermore, the lens model fits the

data increasingly poorly as the aberration increases. By contrast, the residuals found by fitting the

aberrated-lens model do not increase as sharply with decreasing distance between the microsphere

and focal plane and do not change as much with the level of aberration. The aberrated-lens model

also produces consistently lower residuals than the lens model, with the largest improvement in

goodness-of-fit observed for the most aberrated system. When the particle is farther than 5 µm from

the focal plane, we find that modeling the effect of aberrations produces more consistent residuals

and improves goodness-of-fit at all aberration levels.

Ignoring the effects of spherical aberration in the model results not only in higher residuals

but also in systematic shifts in the inferred particle refractive index and radius with the aberra-

tion level. When the particle is more than 5 µm from the focal plane, the inferred values for both

the refractive index and radius differ consistently between the most aberrated (0.13mm collar set-

ting) and least aberrated (0.17mm) systems, even when the particle is at the same zp (Figure 3.4,

top). We quantify this parameter shift by determining the the absolute difference between the in-

ferred parameters for each zp more than 5 µm from the focal plane, then averaging across particle

position to find the mean absolute difference with standard error. The inferred refractive indices

differ by (0.030 ± 0.002), or (1.8 ± 0.1) %, and the inferred radii differ by (0.020 ± 0.002) µm, or
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Figure 3.3: (a‐c) The sum of squared residuals between holograms of an immobilized microsphere and best‐fit holograms
found with both the lens model and aberrated‐lens model as a function of distance from focal plane and level of spher‐
ical aberration. While both models produce high residuals near the focal plane, outside this region, the aberrated‐lens
model produces consistently lower residuals than the lens model does. This improvement in goodness‐of‐fit occurs
across zp and aberration level, with the largest improvement seen in the most aberrated system.

(2.0 ± 0.2) %, when the particle is more than 5 µm from the focal plane. This difference is far larger

than the uncertainty in parameters, estimated as the standard error for each best-fit value and shown

as error bars in Figure 3.4.

When we account for aberration in our model, the inferred parameters no longer depend on

the level of aberration (Figure 3.4, bottom). When the sphere is more than 5 µm from the focal

plane, the refractive indices inferred using the aberrated-lens model differ by (0.002 ± 0.001), or

(0.16 ± 0.03) %, between the most and least aberrated systems, an order-of-magnitude improvement

over the refractive indices inferred using the lens model. The inferred radii differ by (0.007 ± 0.002) µm,

or (0.8 ± 0.2) %, a two-fold improvement.

Furthermore, the refractive index and radius that we infer by fitting the aberrated-lens model

are close to the values reported by the manufacturer of the particles, irrespective of the aberration

level. When the microsphere is more than 5 µm from the focal plane, we infer a refractive index of

n = (1.597 ± 0.014) and a radius of r = (0.951 ± 0.017) µm for the least aberrated system, and

n = (1.599 ± 0.015) and r = (0.950 ± 0.027) µm for the most aberrated system, where the val-

ues reported represent the mean and standard deviation of inferred parameters across zp values. The
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Figure 3.4: Refractive index and radius inferred by fitting the lens model and aberrated‐lens models to the data, shown
as a function of particle distance from the focal plane. Colors indicate the level of spherical aberration, as measured by
the correction‐collar setting (lowest level of aberration is at 0.17mm). Both models perform poorly near the focal plane,
yielding unphysical and inconsistent values for the refractive index and radius when the particle is closer than about
5µm to the focus. Outside this region, the refractive index and radius inferred by fitting the lens model depend on the
level of aberration in the system. For the aberrated‐lens model, this systematic difference disappears, and we obtain
consistent results across aberration levels.
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manufacturer reports the value of the radius as r = (1.050 ± 0.026) µm and the refractive index as

n = 1.591 at 590 nm; we expect the refractive index of polystyrene to be n = 1.586 at 660 nm192.

We find good agreement between the inferred and expected refractive index irrespective of aberra-

tion level in the system. Although there is a difference between the manufacturer’s mean value and

our inferred value of the radius, the inferred values are consistent across aberration levels. The re-

maining systematic difference might arise from differences in measurement conditions (dry versus

aqueous), polydispersity in the particle stock, or additional unmodeled optical effects. Nonetheless,

the self-consistency of the parameters and the agreement between the inferred and expected refrac-

tive index show that modeling spherical aberration removes one source of systematic error in particle

characterization

These characterization results do not change significantly with zp when the particle is more than

10 µm from the focus. The variation in the inferred radius, as quantified by the standard deviation

across zp values, is 0.9 %, and that in the inferred refractive index is 0.5 %, as compared to 19.7 % (ra-

dius) and 6.0 % (refractive index) when the particle is less than 10 µm from the focus. Neither the

lens model nor the aberrated-lens model give consistent or even physically realistic estimates when

the particle is within 5 µm of the focus, and in the 5 µm to 10 µm range, the inferred values have a

noticeable zp dependence. For example, as the particle approaches the focus from above, the refrac-

tive index is systematically underestimated and the radius is systematically overestimated; the reverse

occurs as the particle approaches the focus from below. Therefore, the forward-modeling approach

that we demonstrate should be used with caution when, for example, one must characterize particles

that could drift near the focal plane. Future work should focus on modeling other optical effects

that are relevant near the focus. We hypothesize that the poor characterization close to the focus

arises because there are few fringes and little contrast, limiting the amount of information that could

be extracted by fitting. The dependence of the inferred parameters on zp that we observe might pro-

vide some clues about what other effects must be modeled to improve the precision near the focal

60



plane.

There is no additional computational cost to calculating a hologram with the aberrated-lens

model compared to the lens model. On a 1.6GHz Intel Core i5 processor, the aberrated-lens model

takes (85 ± 3)ms to generate a 200 × 200 pixel hologram, while the lens model takes (86 ± 5)ms;

these numbers include overhead incurred by the holopy package124. However, it does take longer to

fit the aberrated-lens model to data because it has more parameters than the lens model.

3.4 Numerical methods

We evaluate Eqs. 3.4–3.5 using the same methods described by Leahy, Alexander, and coworkers118

for an unaberrated lens. Because spherical aberrations preserve the azimuthal symmetry in Eqs. 3.4–

3.5, their numerical evaluation carries no additional computational complexity relative to the un-

aberrated case and retains a computational advantage over the lensless model due to additional nu-

merical optimizations in the lens model118. We use the Python package holopy124,193 to calculate

holograms using the lens model118.

To fit these models, we use a multi-step approach designed to avoid local minima. We first use a

parallel-tempered, affine-invariant, Markov-chainMonte Carlo ensemble sampler, as implemented

by the Python package emcee194. We choose uniform priors with bounds set by any physical con-

straints of the experimental system (x, y > 0, r > 0, n > 0, 0 < β < 1.2, α > 0). We run

this parallel-tempering algorithm at 7 temperatures with 50 walkers for 2000 steps each, which takes

approximately 12 h per hologram on one core. We therefore use parallel tempering to fit only every

20th hologram in each stack.

We then fit the remaining intermediate holograms using the maximum a posteriori parameters

found with parallel tempering as the initial guess. We fit these holograms iteratively with the evo-

lution strategy CMA-ES (covariance matrix adaptation evolution strategy)121, as implemented by
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the Python package cma195, and with a Levenberg-Marquardt algorithm for nonlinear least-squares

fitting, as implemented by the python package lmfit196. We find that when we fit with CMA-ES

alone, we avoid local minima but often fail to fully converge on the minimumwithin a reasonable

computation time. Conversely, we find that when we use only Levenberg-Marquardt least-squares

fitting, we converge to a good fit only with a very good initial guess. Thus, we first explore the poste-

rior landscape with CMA-ES, and then ensure that we converge on the best fit through least-squares

minimization of the residuals. The combination of the two algorithms with the initial guess from

MCMC produces fits comparable to those we find with parallel-tempering, but with much shorter

run times. When we maximize the posterior with CMA-ES, we choose broad Gaussian priors, with

means set by the maximum a posteriori parameters found by parallel tempering and variances set

to physically reasonable values, such as the width of a pixel for the particle’s x and y coordinates

(σx,y = 0.176 µm, σz = 4 µm, σn = 0.2, σr = 0.1 µm, σα = 0.5, σβ = 0.4, σaℓ = 300). The

widest priors are chosen for a0, a1, and a2, which have widths of the same order as the typical values

we infer for the coefficients. We choose these wide priors because in typical experiments the micro-

scope user has little a priori knowledge of the aberration. For other parameters, we place bounds on

the Gaussian priors if there are any physical constraints (x, y > 0, r > 0, n > 0, 0 < β < 1.2,

α > 0). We then use least-squares fitting to minimize the residuals between the data and the best-

fit holograms found by CMA-ES. The error bars shown in Figure 3.4 are calculated by lmfit from

the estimated covariance matrix. Because the holograms are analyzed individually, the uncertainties

are independent. They do not account for systematic errors. We find that when the holograms are

closely spaced in zp, the parameters change slowly enough that we avoid local minima in fitting the

holograms between the select parallel-tempered frames.

To determine the order of the expansion of the aberration function necessary to describe the

data, we calculate the sum of squared residuals χ2 and the maximum a posteriori parameters for in-

creasing aberration order using the parallel-tempered sampler described above. We select holograms
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taken at zp = 7.5 µm above the focal plane, for 0.13mm to 0.17mm correction. Holograms at this

position are well within the distance from the focus where fitting returns reasonable residuals for all

models, but they also show a large change in structure as we change the level of aberrations, indicat-

ing a strong dependence on the aberration function. We find that the χ2 value decays with increas-

ing aberration expansion order, with χ2 at a maximumwith zeroth-order aberration (lens model)

and decreasing with each additional aberration order included before plateauing. We observe this

decay in χ2 for all levels of aberration, with the sharpest decay occurring in the most aberrated sys-

tem. For our data, the χ2 values plateau when we expand up to the eighth-order phase polynomial,

which includes aberration coefficients a0, a1, and a2. We find very small differences between the

eighth-order and tenth-order expansion, with an average decrease in χ2 of 0.6 % across levels of aber-

ration. This improvement in goodness-of-fit is much smaller than the 43%mean decrease in χ2

found between the zeroth- and eighth-order expansion.

We see additional evidence favoring the eighth-order expansion in the comparison of the inferred

maximum a posteriori parameters to the manufacturer’s specifications for the particles. We find

that when we include only a0 in the expansion, the χ2 value decreases greatly compared to the lens-

model, but the maximum a posteriori parameters become unphysical, with the maximum a posteri-

ori refractive index jumping to nearly 1.68, much larger than the anticipated value of 1.59. As we

increase the number of aberration coefficients, the maximum a posteriori values of the parameters

plateau to physical values with the eighth-order expansion with coefficients a0, a1, and a2. We find

small differences between characterization with the eighth- and tenth-order expansion, with aver-

age differences of 0.5 % in refractive index and 0.6 % in radius. To avoid unnecessary complexity in

the model, we choose to expand the aberration function to the eighth-order phase polynomial and

include three aberration parameters in the model.

Although we find that truncating the aberration series at the eighth-order phase polynomial is

appropriate for the aberration level in our experimental system, other experimental systems may
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require higher-order expansions to fully capture the aberration function.

3.5 Conclusion

Unless carefully corrected, spherical aberration is present in typical holographic microscopes and

can significantly affect hologram structure. Spherical aberration can arise in an otherwise corrected

system when the correction collar on a water-immersion lens is incorrectly set, or when there are in-

terfaces between media of different refractive indices—for example, when an aqueous sample cham-

ber is imaged using an oil-immersion or air-immersion objective. We have shown that neglecting

to account for this aberration leads to inconsistent particle characterization when fitting a forward

model to the data.

Adding the effects of spherical aberration to a forward model of hologram formation improves

the fit of the model to the data and removes aberration-dependent shifts in the recovered parame-

ters. Fitting with this aberrated-lens model makes particle characterization with holography robust

to aberration for both isolated spheres or well-separated collections of spheres82. With greater com-

putational resources, it could be expanded to the characterization of other particles, such as clusters

and spheroids117,119. The robustness to level of aberration is a useful feature for experiments, be-

cause it means that no prior knowledge or characterization of the aberrations is needed. Instead,

the aberration coefficients can be fit at the same time as other parameters such as the refractive in-

dex and radius. Thus, our method can correct not only the known aberrations in the microscope,

such as those induced by the coverslip, but also aberrations that are unknown to the experimentalist

because they are intrinsic to the instrument or objective.

An interesting direction for future work is to determine whether modeling the effects of aberra-

tion enables reliable particle characterization even with a highly aberrated lens. For example, low-

cost holography with a ball lens may be possible. For highly aberrated systems, our methodology
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could be extended to other types of aberration, including curvature of field or coma.

Data from the experiments shown in this paper are available in Ref. 197. Source code for the

forward model and inference calculations is available in Ref. 193.
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Imagination is better

than a sharp instrument. To pay attention, this is our endless

and proper work.

Mary Oliver, Yes! No!

4
High-precision measurements of particle

gap distances
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By observing the statistics of the motion of two interacting particles, we can infer the un-

derlying interactions between them. In equilibrium, the distribution of distances r between two

particles is given by a Boltzmann distribution that depends on the particle pair potentialU(r) such

that

p(r) ∝ exp [−βU(r)] , (4.1)

where β = 1/kbT, kb is the Boltzmann constant, and T is the temperature. Therefore, to probe the

underlying pair potential, which has implications for quantifying the energy and entropy in a partic-

ular system to understand self-assembly and structure formation, we can measure the distribution of

particle positions.

If we are to characterize short-ranged colloidal interactions such as depletion198, screened electro-

statics33, DNA-mediated interactions25, or van der Waals199 forces, we must measure relative parti-

cle positions over time. Because these interactions can vary over a distance of nanometers from the

surface of a micrometer-scale sphere, we require that those measurements are precise to the nanome-

ter scale. And in order to directly measure the particle interactions, we would like to measure the

positions without confining the particles by an external potential.

Particle localization to nanometer-scale precision without confinement can be difficult. The

typical approach, video microscopy, allows colloidal particles to be tracked with a simple bright-

field microscope with subpixel localization for particles moving in two dimensions125. Although

bright-field microscopy is not designed for out-of-focus imaging, axial information can be extracted

by quantifying out-of-focus blur, allowing a single particle to be tracked to subnanometer preci-

sion200. However, 3D tracking with bright-field microscopy for more than one particle remains less

precise, owing to multiple scattering and near-field coupling between the spheres201. One way to

avoid multiple scattering is to index-match the particles and fluid. If the particles are fluorescently la-

beled, they can then be imaged with confocal microscopy. Extracting quantitative information from
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these images requires further analysis; recent methods have achieved particle localization to 3 nm202.

A limitation of confocal microscopy, however, is that it relies on axial scanning to acquire 3D in-

formation, limiting the method to large or slowly moving particles. An alternative approach, total

internal reflectance microscopy, does not require axial scanning. It makes use of scattering from a

weak evanescent wave near a surface to measure nanometer-scale changes in particle heights203, but

can only image particles very close to a surface – around 250 nm or less.

Here, we demonstrate an alternative approach to solving measuring small interparticle distances

using holographic microscopy. Because holograms record both phase and intensity, we can recover

three-dimensional (3D) information from a single two-dimensional (2D) image, allowing us to track

particles in 3D without confinement or scanning. Using this approach, we measure the trajectories

of two freely diffusing colloidal spheres. By fitting a model of particle light scattering to this data, we

directly infer the surface-to-surface gap distance to nanoscale precision. Because the model accounts

for multiple scattering and near-field coupling between the two spheres, we can accurately measure

small separation distances.

Previous attempts to measure small gap distances between colloidal spheres with holographic

microscopy include the work of Fung and coworkers88, which used a model-based approach to

quantify the translational, vibrational, and rotational dynamics of colloidal clusters freely moving in

3D. They were able to track interparticle distances by analyzing the data with an exact numerical so-

lution to scattering by two spheres, which they found was necessary due to the near-field coupling of

the particle scattering at small separation distances. By fitting for the particle positions in 3D space,

they tracked the vibrational dynamics of a colloidal dimer and inferred the particle pair potential.

Though an important proof of concept, this work had several limitations. For one, the inferred

particle radii had an uncertainty on the order of 10 nm to 100 nm, the same magnitude as the range

of the interaction itself. Because each particle radius and position were inferred separately, there

were also strong covariances between the model parameters, which lead to large uncertainties in the
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gap distance, and the fitting procedure was not able to explicitly avoid unphysical regimes where the

particles overlapped. Another challenge was avoiding local minima in the fitting landscape. Because

Fung and coworkers used a gradient-descent-based algorithm, they required an initial guess close to

the global minimum for reliable results.

In this chapter, we develop a method that overcomes these limitations and allows measurement

of gap distances as small as a few nanometers to nanometer-scale precision. We first parameterize

the model such that the gap distance between the spheres is an explicit parameter. We also take a

Bayesian approach to fit the model to the data, which allows us to account for any prior information

about our system. We set informative priors on the parameters, including constraining gap distances

to be positive – explicitly forbidding sphere overlap in a way that was not previously possible – and

characterizing, a priori, the radii and refractive indices of the particular particles used in each ex-

periment. We also use more sophisticated fitting algorithms, including parallel temperedMarkov

chainMonte Carlo (PT-MCMC) methods123 and evolutionary strategies like covariance matrix

adaptation (CMA-ES)121, to sample the full posterior probability landscape. With this sampling,

we obtain not only the best-fit parameters that describe the data, but also the spread and correlation

of those parameters. By marginalizing over, or integrating out, other parameters, we incorporate all

uncertainties into the uncertainty of the single parameter of interest: the interparticle gap distance.

4.1 Methods

We suspend dilute amounts of 1.3 µm sulfate polystyrene spheres fromMolecular Probes (Lot

S37499, density 1.005 gmL−1) in equal volume deionized water (output fromMillipore Elix 3 and

Millipore Milli-Q Synthesis) and heavy water (deuterium oxide, Cambridge Isotope Laboratories,

≥99.9%) to density-match the polystyrene spheres with the solution, thereby mitigating the effects

of sedimentation. We then add sodium carboxymethyl cellulose (NaCMC, DS 0.9,≥99.5%, Acros
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Figure 4.1: Schematic of method to infer particle gap distances with holographic microscopy. (a) Diagram of the deple‐
tion interaction. We induce an attractive interaction between polystyrene spheres by adding small depletant polymers
to the solution, which drives entropic attraction between spheres with a range set by the size of the depletant particle.
(b) Diagram of hologram formation by two spheres. We shine coherent light onto the pair of spheres and record the
resulting hologram, the interference between the incident and scattered light. (c) Example of recorded holograms (top)
and visualization of particle positions (bottom) given by the best‐fit parameters. The recorded hologram encodes 3D
information about the particles’ positions, sizes, and compositions, which we extract with model‐based analysis. (d)
Example plot of particle gap distance, as determined by model‐based hologram analysis. (e) Example plot of particle pair
potential, inferred by analyzing the distribution of gap distances in (d). Data and plots are for illustrative purposes only.
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Organics). The polymer has a molecular weight of 700,000, a radius of gyration of about 60 nm,

and an overlap concentration of 0.11mgmL−1 204,7. The polymers induce a depletion attraction

between the spheres. We suspend samples at a range of polymer concentration from 0.075mgmL−1

to 0.10mgmL−1. The NaCMC polymers are nearly index matched with the background, enabling

us to image the particles in an optically clear environment.

We create sample chambers of plasma cleaned no. 1 glass coverslips (VWR). We deposit a thick

line of vacuum grease (Dow Corning) in a circle on the bottom coverslip, fill the center of the circle

with solution, then press the second glass coverslip on top. We seal the chambers with UV-cured

epoxy (Norland Optical Adhesives 85). We pipette approximately 2 µL of solution into the sample

chambers, which are approximately 50 µm deep. The samples have a density of approximately 10−6

particles per cubic micrometer.

We record images of these suspensions on an inverted in-line holographic microscope, illumi-

nated with a diode laser (660 nm wavelength, 120mW power, Opnext HL6545MG) driven at

130mA (Thorlabs LDC205C). We use a Nikon Eclipse Ti TE2000 microscope with a water-

immersion objective and correction collar (Plan Apo VC 60× /1.20WI, Nikon) and a 1024×

1024-pixel CMOSmonochrome sensor array (PhotonFocus A1024) to capture the hologram.

Before analyzing each hologram, we subtract the average of 25 dark-count images taken without

illumination and divide the resulting hologram by the average of 25 background images taken with

no particles in the field of view44. We manipulate the colloidal spheres with optical tweezers that are

created by a fiber-coupled 830 nm laser diode (Sanyo DL-8142-201), with a Thorlabs TCM1000T

temperature controller and LD1255 current controller. The beam of the tweezer backfills the objec-

tive and is focused at the focal plane.

For each experiment, we use optical tweezers to bring two spheres to the center of the sample

chamber, far from any wall or surface, and image the particles with holographic microscopy while

they are well separated, at least 10 particle radii apart. We use these images of the spheres to charac-
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terize the size and refractive index of each sphere, as we discuss below. We then bring both spheres

into the optical trap, which brings the spheres close together and orients the doublet to be roughly

parallel to the focal plane. We then turn off the optical tweezers and observe the particles as they

freely diffuse in the center of the sample chamber. We record 30 s videos of 4000 frames at 133

frames per second.

We also characterize particle gap distances for particle pairs diffusing on a glass surface, which we

discuss in Section 5.4. For these experiments, we suspend dilute amounts of 0.71 µm polystyrene

beads (Fluoromax, ThermoFisher) in equal volume deionized water and heavy water with 2 mM

NaCl to screen interactions between the particles and glass surfaces. We then add sodium car-

boxymethyl cellulose (DS 0.9,≥99.5%, Acros Organics) with molecular weight of 250,000, and a

radius of gyration of about 40 nm, and an overlap concentration of 1.01mgmL−1 205. We suspend

samples at a range of concentrations from 0.17mgmL−1 to 0.40mgmL−1. For this system, we use

the same style of sample chambers and same particle density as the 3D system, but move the par-

ticles to the top coverslip of the sample chamber using the radiation pressure of the optical tweez-

ers. The depletion interaction binds the particles to the glass surface, where they are free to diffuse

but remain confined to a quasi-2D volume. We record shorter videos of approximately 10 s at 133

frames per second because the bond lifetime is short and the particles quickly diffuse away from

each other.

4.2 Bayesian analysis of holograms

We take a model-based approach to the analysis of the recorded holograms, as described in detail in

Chapter 2. In brief, we fit a model for hologram formation to the recorded hologram. The forward

model is a solution toMaxwell’s equations that depends on the properties of the particles, including

their positions, sizes, and refractive indices. ByMonte Carlo exploration of the parameter space of
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the model, we recover the full posterior probability density, which allows us to estimate the best-fit

parameters and any uncertainties or covariances among them.

4.2.1 Bayesian inference

The light scattering solution provides a forward model of hologram formation given a particular set

of parameters. But we are really interested in estimating how well a given parameter set describes the

data that we observe. To obtain these estimations, we take a Bayesian approach.

Bayesian inference allows us to weigh our data given the model, or our likelihood, by our previous

expectations, or our prior, to arrive at some estimation of our posterior. It rests on Bayes’s theorem,

which states

P(θ |D,M, I) =
P(D | θ,M, I)P(θ |M)

P(D | I)
, (4.2)

where θ is the vector of parameters of the modelM,D is the observed data, and I is any additional

information.206

Bayes’s theorem states that the probability density of a hypothesis being true given the available

data is equal to the probability density of the data being true given the hypothesis, multiplied by the

probability density of the hypothesis being true, and divided by a normalizing value of the proba-

bility density of the data being true. The probability density P(θ |D,M, I) is known as the poste-

rior, the probability density P(D | θ,M, I) is known as the likelihood, and the probability density

P(θ |M) is known as the prior. Finally, the value of P(D | I) is known as the evidence, which is the

probability density of observing the data under any circumstances. This term normalizes the poste-

rior.

A Bayesian approach to data analysis has several appealing features. For one, it frames probability

as something we can update, a degree of belief that can change as more data becomes available. Per-

haps more appealing is the explicit inclusion of prior information in weighting our degree of belief.
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This prior knowledge can exist in several forms – the constraint that a height above a surface must

be positive, a guess for the refractive index of a material, or manufacturer specifications for particle

size and polydispersity, to name a few. When not explicitly included as prior probabilities, this in-

formation typically informs metaparameters such as initial guesses or bounds on parameters. We

argue that it is in fact more rigorous to formalize the role of prior information in inference prob-

lems, rather than subtly include it behind the scenes in fitting metaparameters.

Another appealing feature of Bayesian inference is the ability tomarginalize, or integrate out

the effects of all parameters not of interest. For example, if we were fitting both the refractive index

n and radius r of some sphere, but we were only interested in the radius, the desired probability

density function could be written as P(r) =
∫
P(r, n) dn. The marginalized posterior P(r)would

then include any uncertainty on n if the parameters have any correlation between them, allowing us

to more accurately quantify the uncertainty with which we are actually concerned. More generally,

the marginalized posterior is given by

P(A |D) =
∫

P(A, θ |D) dθ, (4.3)

where A is a general parameter, θ is all other parameters in the model, and P(A, θ |D) is the mul-

tivariate posterior probability density. This formulation allows us to collapse a multidimensional

posterior probability density to a univariate posterior for a single parameter of interest.

4.2.2 Sampling methods

In general, the posterior is a high-dimensional surface, with dimensions that scale with the number

of parameters in the model. This high dimensionality presents a difficult problem: how can we find

the global maximum of a multidimensional landscape, and how can we evaluate the posterior about

that maximum in a reasonable amount of time?
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One class of methods to sample posteriors is called Markov chainMonte Carlo (MCMC) algo-

rithms207,208,209. In general, Monte Carlo approaches rely on sampling many points of a posterior,

and using that sampled set to construct a representation of the underlying posterior. For MCMC al-

gorithms, this sampling involves a biased random walk: the algorithm samples a point, evaluates the

posterior at that point, and probabilistically decides to accept or reject the point as weighted by its

probability. The accepted steps are recorded and form aMarkov chain. Ultimately, because of this

weighting, the “walkers” spend more time in the region of parameter space where the posterior is

largest, and after many steps, the algorithm’s walk makes a representative sample of the distribution

about its maximum*.

Bayesian inference has experienced explosive growth as sampling methods have become more so-

phisticated and more computationally tractable. HamiltonianMonte Carlo (HMC) approaches

have allowed for efficient sampling in highly multidimensional posteriors122, and parallel tempered

MCMC (PT-MCMC) methods have enabled efficient sampling even in highly multimodal pos-

teriors123. We use several of these algorithms, as well as other fitting methods such as CMA-ES,

throughout the work in this chapter, which we discuss in detail below.

4.3 Prior characterization of spheres

The inferred gap distance between two spheres is highly sensitive to the radii of the particles. Thus,

it is helpful to characterize each pair of spheres used in the experiment before we measure the gap

distance. To characterize the particles, we take advantage of the robustness of fitting holograms with

the single-sphere model (as discussed in detail in Chapter 2). Because we use optical tweezers to

*A historic note: scientists often call this class of methods “Metropolis-Hastings” algorithms after the two
(male) first authors of the formative works on the subject. But it is perhaps more fair that we refer to them as
Rosenbluth-Hastings algorithms, as the algorithm was in fact implemented for the first time by Dr. Arianna
Wright Rosenbluth. For more information about Dr. Rosenbluth’s incredible life and career in science, see
https://www.wowstem.org/post/arianna-wright-rosenbluth.
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bring the colloidal particles together, we can characterize the same spheres that we later image. We

incorporate that characterization as a prior on the inferred radii and refractive indices of the spheres

in the two-sphere light scattering model.

To characterize the spheres, we record 20 images of the well-separated spheres, meaning that they

are separated by a distance of many particle diameters, such that the fringes of the holograms do not

interfere. As results from Leahy and coworkers118 and the results described in Chapter 381 have

shown, the height z of the particles has a large impact on the consistency of the inferred parameters.

We record the well-separated holograms at a height that is many particle diameters from the focal

plane (z ≈ 20 µm for 1.3 µm spheres, and z ≈15 µm for 0.7 µm spheres), and maintain that same

height as we bring the spheres together and record as they freely diffuse.

The generative model we use can also strongly affect the inferred parameters for the radius and

refractive index, as discussed in Chapter 3. To obtain the most precise characterization possible, we

fit the well-separated spheres to a single-sphere model that includes optical effects from the lens118.

We do not use the model that accounts for optical aberrations, as the results in Chapter 3 show that

it is not necessary to account for spherical aberration when the correction collar on the coverslip is

properly set to the thickness of the coverslip.

As Leahy and coworkers noted118, the resulting posterior is highly multimodal when the lens an-

gle is included as a parameter. This multimodal posterior presents issues with sampling and finding

a global maximum. For typical MCMC algorithms, such as the affine-invariant MCMC sampler

implemented by the Python package emcee194 used to sample the multimodal posterior shown in

Fig. 4.2, the walkers do not find the true global maximum and become stuck, leading to inaccurate

results. To overcome this problem, we use a parallel-tempered, affine-invariant MCMC sampler im-

plemented by emcee, using 7 temperatures with 50 walkers for 2000 steps each. This sampling takes

approximately 10 h for each hologram, but it converges onto a global maximum. The best-fit holo-

grammatches the recorded data (Fig. 4.2a) and the walkers sample the multimodal wells of the lens
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angle (Fig. 4.2b).

The samples from the PT-MCMC sampler can be used to estimate the maximum a posteriori

(MAP) values for each parameter, as well as their uncertainties and covariances. Pair plots of the

posterior for a single frame are shown in Figure 4.2b. The marginalized probability densities for

each parameter are shown on the diagonal and are approximately Gaussian for all except for the

lens angle, owing to its strongly multimodal probability density. The marginalized values for the

parameters match our expectations, with the inferred maximum a posteriori values for the particle

radius (r =0.664 µm) and refractive index (n =1.6) matching manufacturer specifications for the

roughly 1.3 µm diameter polystyrene spheres.

We use the posteriors from all frames to estimate the average diameter, average refractive index,

and uncertainties to be used in subsequent analyses. The mean diameter (or refractive index) across

frames is given by210

dw =
∑
i

widi∑
i wi

, (4.4)

where wi is given by

wi = 1/σ2i . (4.5)

For our data, di is the MAP value of each frame’s posterior and σi is the width of the marginalized

distribution.

This formulation allows us to describe the mean of the measurements of the radius and refractive

index as Gaussians with mean dw and width σw. We use these means and widths as prior probabili-

ties on each parameter r1, r2, n1, n2 for the two-sphere model. We place priors on these parameters

rather than setting them as time-invariant constants in the subsequent fitting because we find that

allowing slight variations in each as the particles move in 3D space allows for better fits to the holo-

grams.
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Figure 4.2: (a) With parallel tempering, the maximum a posteriori fit (middle) matches the recorded hologram (left) of
a 1.3µm sulfate polystyrene sphere and has low residuals (right). (b) Sampled posterior probability densities for all
parameters in the lens model for a single particle and frame. The marginalized probability densities for each parameter
are shown on the diagonal. They are approximately Gaussian for all except for the lens angle. The off‐diagonal plots
show the two‐dimensional posterior surfaces for each combination of parameters, with skew in these surfaces arising
from correlations between the parameters. The inferred maximum a posteriori values match manufacturer specifications
for the particle radius (r =0.664µm) and refractive index (n =1.6).
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Figure 4.3: Fitting holograms of particle dimers. (a) Coordinate system used for fitting location of the two spheres,
allowing gap distance to be an explicit model parameter. (b) Data, best fit hologram, and 3D rendering of fit for a single
frame of the two spheres. The best‐fit hologram found with the model describes the data well.

4.4 Model parameterization

In addition to placing priors on the size and refractive index of each sphere, we also reparameterize

the scattering model for the particle pairs so that the gap distance between the spheres is an explicit

fitting parameter. Instead of fitting for each particle’s position (xi, yi, zi), we fit to the center of the

dimer (xg, yg, zg) and then the spherical coordinates (g, θ, φ) that describe the rotation of the line

through the center of the dimer, where g is the gap distance between the spheres (Fig. 4.3a). The

relation between the center of the dimer and the centers of each sphere i is


xi

yi

zi

 =


xg

yg

zg

± (ri + g/2)


cos φ sin θ

sin φ sin θ

cos θ

 . (4.6)

The other parameters in the model include the refractive indices of each sphere n1, n2, the radii of

each sphere r1, r2, and the scaling parameter α which adjusts the relative intensity of the incident

and scattered fields.
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To calculate the scattering of the two spheres, we use a lensless model of scattering by two spheres

as implemented by holopy193,124. The package computes the numerically exact solution of the scat-

tered fields by a superposition solution that accounts for the multiple scattering between the two

spheres117. Although it is possible to include the effects of the lens in this model119, Alexander and

coworkers found that this approach was computationally prohibitive owing to the need to numer-

ically (rather than analytically) integrate. Because we cannot account for the effects of the lens, we

take care to record holograms in a regime well-suited to the lensless model by taking data well above

the focal plane with an optical train that is aberration-corrected.

We find good agreement between the best fits of this model to the data and the recorded holo-

grams (Fig. 4.3b). This parameterization allows us to directly characterize the gap distance and,

importantly, marginalize over all other parameters in the model, incorporating their uncertainties

directly into the uncertainty on gap distance.

4.5 Model fitting

Now that we have a model for hologram formation, all that remains is to fit that model to the recorded

data. Ideally, we would run a full MCMC fit on each frame. But for a single 30 s video, this sam-

pling would require nearly a full year of computation time. However, this level of fitting is unnec-

essary. Because the videos are recorded at a high frame rate relative to the particle rearrangements,

the information between subsequent frames is highly correlated. Thus, as a compromise between

precision and efficiency, we carefully fit every 100th frame of each video using an iterative combi-

nation of CMA-ES, least squares, andMCMC fitting that we describe below. Once we have a good

fit for these frames, we run sequential least-squares fitting with a Levenburg-Marquadt algorithm,

using the result from each frame as the initial guess for the next frame. Because the frames are closely

spaced in time, this sequential fitting can initialize the fitting algorithm very close to the global maxi-
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mum of the posterior.

The first step of the fitting scheme for every 100th frame is to estimate the 3D orientation of

the spheres by assuming that they are touching and allowing the model to optimize zg, θ, and φ, as

well as the rescaling parameter α, while keeping all other parameters fixed at our best guesses for ri,

ni, xg, and yg (the last two of which we estimate by a Hough transform of the holograms83,96,97).

We fit with the evolutionary strategy CMA-ES with 100 walkers, as implemented by the Python

package cma195. We place informative priors on the parameters, such as bounding zg to be larger

than 0 and smaller than the approximate size of the sample chamber of 50 µm, with a mean at the

recorded height of the dimer found by translating the microscope stage. We set uniform priors on θ

and φ bounded by the physical limits of the angles, with slight extension past these limits to keep the

walkers from encountering a hard cutoff near the extremes. The full priors chosen are

zg ∼ Truncated Normal(μ = zrec, σ = 1, lower = 0, upper = 50)

θ ∼ Uniform(lower = 0− 0.1, upper = π + 0.1)

φ ∼ Uniform(lower = 0− 0.1, upper = 2π + 0.1)

α ∼ Uniform(lower = 0.5, upper = 1.2).

(4.7)

The second step of the fitting algorithm verifies that CMA-ES has maintained the correct labels

for each sphere by calculating the model for flipped labels and coordinates, and accepting the model

that has the higher log(posterior) function. Flipping happens rarely, but we must account for it to

find the correct orientation for the dimer.

The third step of the fitting process is to find a reasonable guess for the interparticle gap distance.

To do this, we allow the gap distance g, the dimer height zg, and the scaling parameter α to vary,

while setting θ and φ to the values found by the previous fitting step, and fixing all other parameters

to the previous values of ri, ni, xg, and yg. We allow zg to vary to allow for any potential covariances
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between the height and the gap distance.

Now that we have a reasonable estimate for each parameter through prior characterization, we

use these fits as initial guesses for a Levenberg-Marquardt algorithm for nonlinear least-squares fit-

ting, as implemented by the Python package lmfit196. The final step before fitting with the full

MCMC sampler is checking the edge cases on the angle parameters to see if they have gone above or

below the bounds set by geometry, and cycling them by 2π if they have crossed the threshold.

Finally, we allow all parameters of the model to vary and sample the model with an affine-invariant

Markov chainMonte Carlo sampler as implemented by emcee194. We use 50 walkers that each make

2000 samples, and we randomly subsample the holograms to approximately 30% of the pixels to

reduce computational time99. The priors used are

ri ∼ Truncated Normal(μri , σri , lower = 0, upper = 1)

ni ∼ Truncated Normal(μni , σni , lower = 0, upper = 2)

xg, yg ∼ Truncated Normal(μx,y, 0.177, lower = μx,y − 5, upper = μx,y + 5)

zg ∼ Truncated Normal(μz, 1, lower = 0, upper = 50)

g ∼ Truncated Normal(μgap, 0.005, lower = 0, upper = 10)

θ ∼ Truncated Normal(μθ, 0.1, lower = 0− 0.1, upper = π + 0.1)

φ ∼ Truncated Normal(μφ, 0.1, lower = 0− 0.1, upper = 2π + 0.1)

α ∼ Truncated Normal(μα, 0.5, lower = 0, 5, upper = 1.2),

(4.8)

where the means of xg,yg, zg, θ, φ, α, and g are the final optimized result from the previous fits, and

the mean of the priors of each r and n are found using Equations 4.4 and 4.5 such that μ = dw and

σ = σw.

TheMCMC sampler runs in approximately 3 hours. The final step in the fitting process for a

given time series is to use the MAP values returned by the sampler as an initial guess for sequential
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frames that have not yet been fit. We use a Levenberg-Marquardt algorithm for nonlinear least-

squares fitting, which is much faster than sampling, taking on the order of 1min for each frame.

Because the frame interval is much shorter than the diffusion time of the spheres, the results for the

previous frame robustly return a good fit for each sequential frame.

4.6 Results

TheMCMC sampler gives us more than simply the best-fit parameters; it allows us to marginalize

the full posterior and calculate any covariances among parameters (Fig. 4.4). The results are within

reasonable agreement of our prior characterization and manufacturer expectation for the particle

radius and refractive index, and are reasonable for all other parameters.

Importantly, we find a high precision for the gap distance between the particles. The uncertainty

on the gap distance is a few nanometers, as seen in Fig. 4.5, and the uncertainty on the particle size is

less than 1 nm. This precision is two orders of magnitude better than previous measurements of gap

distance with holographic microscopy88.

With the robust fitting method described above, we precisely measure the gap distance between

two particles as a function of time (Fig. 4.6) for the 3D experimental system of 1.3 µm spheres with

0.075mgmL−1 of NaCMC (radius of gyration approximately 60 nm). The distribution of gap dis-

tances can be used to infer the minimum energy point for the potential. We discuss this process, and

how these results vary with depletant size, particle size, depletant concentration, and ionic strength

in the subsequent chapter.

4.7 Conclusion

Amodel-based inference approach combined with holographic microscopy is well-suited for imag-

ing small numbers of spheres freely diffusing in three dimensions. The model-based approach
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Figure 4.4: Sampled posterior probability density for a single hologram of two interacting spheres. The plots along the
diagonal show the marginalized probability for each parameter, while the off‐diagonal plots show the two‐dimensional
marginalized posterior for each pair of parameters.
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Figure 4.5: Zoomed‐in version of Figure 4.4 for the gap distance and particle size. The marginalized probability for each
parameter gives a measurement for the best fit as well as uncertainties on the parameters, which we find to be on the
order of nanometers.

Figure 4.6: Inferred gap distances for frames across a single 30‐second video of a pair of freely diffusing 1.3µm spheres
with a depletant concentration of 0.075mgmL−1. Error bars are shown but are smaller than the point size.
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rigorously accounts for any scattering between the spheres, while the microscope encodes three-

dimensional information about the sample in a single two-dimensional image, removing the need

for axial scanning or particle confinement. Moreover, model-based analysis of holograms works par-

ticularly well for small numbers of particles, when the number of parameters are relatively low and

computational costs are not too high.

While the first attempt to solve this problem of inferring interparticle distances with holography

happened over a decade ago88, real success would have to wait for improvements, not in data ac-

quisition, but in data analysis. With Bayesian inference, we now have tools to better constrain this

problem through prior characterization of the spheres and a model directly parameterized in terms

of the gap distance, and tools to better sample the posterior landscape.

We have shown that the precision achieved through the combination of model-based inference

and experimental protocols is of the order of nanometers, orders of magnitude better than the pre-

cision of 10 nm to 100 nm previously reported88. Furthermore, this precision is also of the order or

better than results from tracking particles in bright-field or confocal microscopy, with the advantage

that holographic microscopy does not require any confinement or scanning.

With a precise characterization of particle gap distance over time, we now turn to the problem of

interpretation in the following chapter. The gap distance encodes information about the underly-

ing particle interactions. We have solved the problem of extracting information from our recorded

holograms; what now remains is to understand what we have found.
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If we had a keen vision and feeling of all ordinary human

life, it would be like hearing the grass grow and the squirrel’s

heart beat, and we should die of that roar which lies on the

other side of silence.

George Eliot,Middlemarch

5
Inferring short-ranged colloidal interactions

The research in this chapter was done in collaboration with Solomon Barkley, Lev Bershadsky, Jes-

sica Sun, and VinothanManoharan, and was supported by the HarvardMaterials Research Science

and Engineering Center (DMR 20-11754) and the Department of Defense through the National

Defense Science and Engineering Graduate Fellowship.

Many phenomena in soft matter physics depend sensitively on the particular structure of

87



the interparticle pair potential, but it can be challenging, if not in some cases impossible, to accu-

rately predict this potential a priori. Models for the behavior of colloidal spheres in aqueous solu-

tions, such as DLVO (Derjaguin and Landau, Verwey and Overbeek) theory for van der Waals and

electrostatic forces, depend sensitively on the solvent conditions and particle charge, which can be

difficult to characterize211. Moreover, some measurements of bulk colloidal behavior deviate from

predictions, such as those for charged colloidal suspensions212 or suspensions with high depletant

concentrations198. In general, models for interactions often make simplifying assumptions for inter-

actions that may not always hold, such as neglecting geometrical confinement or surface effects from

a functionalized coverslip213.

Because a priori prediction of colloidal interactions is challenging, it is desirable to instead di-

rectly measure particle interactions in order to make accurate predictions for colloidal assembly

and behavior. Some current experimental methods for measuring interaction potentials rely on

observing confined particles that may be stuck to the wall of a flow cell as in hydrodynamic force

balance214 or the tip of a force sensor as in atomic force microscopy215. Other methods require the

particle motion to be constrained to a limited number of dimensions, such as the characterization

done by Crocker and coworkers to measure short-ranged interactions of a pair of particles confined

to move in one dimension within a optical line trap198. These methods also require complex exper-

imental setups and might involve conditions that differ from in situ environments of the systems of

interest.

Regardless of the level of confinement in the experiment, typical methods for inferring parti-

cle potentials frommeasurements may have systematic errors. Consider the method outlined by

Crocker and coworkers198, which has been used to characterize several types of interactions, includ-

ing interactions between red blood cells216, DNA-mediated colloidal interactions25, and three-body

interactions217. In all these experiments, the particles are confined by optical traps. That optical po-

tential must be known and subtracted off to resolve the underlying potential. Moreover, when parti-
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cles are assumed to move within one dimension, any out-of-plane oscillations within the optical trap

are neglected. The optical trap used for confinement might also change the pair potential through

heating or light scattering effects such as optical binding forces, which can be significant218.

Some groups have attempted to address these differences from experimental conditions by in-

stead measuring the potential of mean force of many interacting particles and extrapolating to the

dilute limit219. But these methodologies are subject to the limited precision of particle tracking

algorithms. As discussed in the previous chapter, tracking freely moving particles in 3D space is

a challenging problem because colloidal spheres at close distances can scatter light multiple times

and optical artifacts arise in microscope images. There have been attempts to overcome this limited

precision through reconstruction of bright-field images218, back focal plane interferometry213, to-

tal internal reflection microscopy199, or confocal microscopy,220 but these methods require either

confinement or axial scanning, which limits the time resolution.

As demonstrated in the previous chapter, we can use holographic microscopy to account for or

avoid many of these issues. With a model-based analysis of holograms, we can extract gap distances

between freely diffusing pairs of colloidal spheres to nanometer-scale precision. Now, we turn to

the problem of extracting information from the distribution of those distances. In this chapter, we

describe methods for inferring particle interactions with model-free and model-based methods, as

well as precise quantification of the curvature of the potential about the minimum.

5.1 Boltzmann inversion

The distribution of center-to-center distances r between two particles in equilibrium is given by a

Boltzmann distribution depending on the pair potentialU(r):

pb(r) ∝ exp [−βU(r)] , (5.1)
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Figure 5.1: (a) Plots of particle center‐to‐center distance over time and histogram of center‐to‐center distances. The
spheres are 1.3µm in diameter and are in a solution of NaCMC polymers at 0.075mgmL−1. (b) Plot of particle pair po‐
tential found by Boltzmann inversion. The data (dots) are well described by a Morse potential (blue line) with a minimum
at approximately 70 nm gap distance. Because we are measuring only energy differences, the curve can be arbitrarily
shifted; we set the energy level to zero at large gap distances. We fit the attractive regime to an Asakura‐Oosawa (AO)
model (gray curve) of hard‐sphere depletant interactions, with best‐fit parameters rl = 0.695µm, rs = 67nm, and φ =
0.29.

where β = 1/kbT, kb is the Boltzmann constant, and T is the temperature. We can invert this rela-

tion to obtain
U(r)
kbT

∝ − ln [pb(r)] . (5.2)

We can measure pb(r) by first constructing a histogram of the distribution of particle distances r

(Fig. 5.1a). By taking the negative natural log of the frequencies and plotting against the distance

r, we arrive at a model-free inference of the particle pair potential. This method of inverting the

Boltzmann distribution can only resolve energy differences. As such, the entire curve can be shifted

arbitrarily up and down, with the zero-point energy typically set by where the energy approaches a

flat line at sufficiently large r.

We first use this method to analyze a measurement of a distribution of gap distances between two

spheres 1.3 µm in diameter, freely diffusing in 3D in a solution of a polymer with a radius of gyra-

tion of approximately 60 nm at a concentration of 0.075mgmL−1. We find that this concentration

of depletant results in a bond lifetime that is well suited to this method: the particles are strongly
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bound, such that they stay together for longer than the 30 s videos, but they also sample many dis-

tances, which is important for resolving longer-range energy levels.

We find that the pair potential found by Boltzmann inversion for this system is well described by

a Morse function (Fig. 5.1b), with an energy minimum at a gap distance of about 70 nm. The min-

imum presumably emerges from the balance between electrostatic repulsion between the charge-

stabilized spheres and the attractive force from the depletant particles. We estimate the attractive

term in the potential by fitting the data to a hard-sphere model of the Asakura-Oosawa potential

(see Section 5.2.1), which gives best-fit parameters of rl = 0.695 µm, rs = 67 nm, and φ =0.29.

We have previously characterized the radii of the large particles to be approximately 0.664 µm, but

we expect the radius inferred from the simple AOmodel to be larger than the hard-sphere radius

because it includes electrostatic repulsion effects. The inferred radius of the depletant polymer is

slightly larger than the radius of gyration of 60 nm, but again includes charge effects. The discrep-

ancy between the inferred and expected volume density of polymers, expected to be about φ = 0.1,

likely also arises from electrostatic effects, as discussed in the following section.

The Boltzmann inversion method does not require any assumptions about the underlying form

of the potential curve, and has been used to elucidate unexpected behavior at high concentrations

of depletant particles198. The inferred particle pair potential also contains a wealth of information

about the shape and range of the interaction.

There are, however, drawbacks to this method. First, the depth of the potential well, an impor-

tant feature for determining the behavior of a colloidal suspension, is ill-constrained, as the zero-

point of the energy depends on knowing the distance at which the potential is negligible. The larger

issue is the strong dependence of the inferred potential on the choice of number of histogram bins.

When the bin size is smaller than the precision on the gap measurements (± 2 nm), we find differ-

ences in the shape of the potential curve (Fig. 5.2). More importantly for our purposes, binning the

distances reduces the precision we have achieved with holographic microscopy, and makes it difficult
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Figure 5.2: Pair potential inferred by Boltzmann inversion of histograms with varying bin size. Dots represent the loca‐
tions of the bins of the histogram, plotted against the negative log of the frequencies. When the width of the histogram
bin used to estimate the probability density function is smaller than the precision of the measurements of gap distance
(± 2nm), artifacts arise in the shape of the potential curve. Conversely, when the bins are around the same width as the
width of the potential well, we obtain a worse estimate of the curvature about the minimum.

to account for the uncertainties on those gap distances.

5.2 Fitting Boltzmann model to full distribution

We now consider a model-based approach to this data analysis that is not subject to the limitations

of the inversion method. We model the underlying particle potentialU(r), then find the parameters

of that model that best describe the observed distribution of distances p(r) in equilibrium. This

method has the advantages of not binning or reducing the data, and it also rigorously accounts for

the uncertainties on each frame.

To implement this method, we rewrite Equation 5.1 with a normalization factor Z to arrive at a

distribution

p(r)dr =
1
Z
exp [−βU(r)] , (5.3)
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where

Z =

∫ b

a
exp [−βU(r)] dr, (5.4)

and a and b are the boundaries of the support of p(r).

If the data {r} are independent and identically distributed (IID), we can write the likelihood

function of all the data points as

p({r} | θ) =
N∏
i=1

1
Z
exp [−βU(ri | θ)] , (5.5)

where θ is the vector of parameters for the potential andN is the number of data points. The log

likelihood is then given by

ln p({r} | θ) = −N lnZ+
N∑
i=1

[−βU(ri)] . (5.6)

With this parameterization, as well as priors on the parameters, we can find the θ that maximize the

log posterior for a distribution of observed data points {r}. However, we must first consider how to

parameterize the model forU(r) by considering the sum of forces acting in our system.

5.2.1 Models of short-ranged interactions

The depletant polymers in the solution induce an entropically driven attraction between the larger

colloidal spheres. This attraction arises from the depletant polymers being physically excluded from

the interior of the larger particle. The region around each large sphere that the polymers cannot

penetrate is called the excluded volume. When the two spheres touch, their excluded volumes over-

lap, and there is more configurational space available to the depletants. Thus, it is entropically favor-

able for the larger spheres to come into contact. Alternatively, we can conceptualize the attractive

force in terms of osmotic pressure. When the spheres approach each other, there is a distance at
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Figure 5.3: Schematic of attractive and repulsive interactions between colloidal particles in the experiments, shown
as sketches of particle potentials. The attractive potential induced by depletant polymers can be modeled through the
Asakura‐Oosawa (AO) theory. This attractive potential depends on the concentration and size of the depletants. The
electrostatics and van der Waals interactions can be modeled by DLVO theory. We expect the total interaction to be
the sum of all these forces, with a potential well with some curvature and range.

which the depletant polymers cannot physically fit between the spheres. The resulting pressure dif-

ferential draws the spheres together.

The excluded volume depends on the center-to-center distance r and the relative radii of the two

species of spheres. In the hard-sphere approximation, we can consider the limits of the interaction

as follows. When the particles are touching, there is an infinite hard-sphere repulsion at a length

scale set by the diameter of the large spheres. On the other extreme, the potential goes to zero when

there is no overlap of the excluded volume, at a length scale set by the diameter of the depletant

particle. In between, the potential depends on the overlap in the excluded volumes, which can be

determined geometrically as a function of the particle separation. This quantitative calculation leads

to the Asakura-Oosawa (AO) model221.

The AOmodel is typically parameterized in terms of the number density of the depletant parti-

cles, but more generally, the depletion potential should scale with the osmotic pressure of the poly-
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mer:

UAO(r)
kbT

=


− π

6
Π
kbT(2as + 2al − r)2 × (2as + 2al + r

2) for r < (2al + 2as)

0 otherwise,
(5.7)

where Π is the osmotic pressure of the depletant polymers, as is the radius of the depletants, al is

the radius of the larger particles, and r is the distance between the two spheres222. The number

density and scaled osmotic pressure Π/kbT are equal only in the limit of low concentration. For

polyelectrolytes, like NaCMC, the second virial coefficient can be significant at small ionic concen-

trations223.

We expect additional interactions between the spheres arising from van der Waals forces and elec-

trostatics. These interactions can be modeled with DLVO (Derjaguin and Landau, Verwey and

Overbeek) theory, which models both electrostatic repulsion between the two like-charged colloidal

spheres and the strong short-ranged attraction from van der Waals forces. However, the strong van

der Waals attraction only occurs at very small particle distances, which the particles do not typically

explore unless the electrostatic screening is strong, such as at high salt concentrations. For our ex-

periments, the salt concentration is low and we therefore neglect van der Waals forces. We model

the electrostatic interactions as a screened Coulomb repulsion between the two spheres, where the

electrostatic effects are given by a double-layer model. In this model, the free ions in solution form a

diffuse layer about the charged surface, with a thickness set by the Debye screening length211. The

potential can be written as

UDLVO(r)
kbT

= Z2λB
(

eκal
1+ κal

)2 e−κr

r
, (5.8)

where Z is the surface charge valence of each large sphere, λB is the Bjerrum length, κ−1 is the Debye

length, and al is the radius of the large particles.
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The sum of these interactions gives the total pair potential:

U(r)
kbT

=
UAO(r)
kbT

+
UDLVO(r)

kbT
. (5.9)

5.2.2 Generic repulsive term

However, the full AO-DLVOmodel is ill-suited for this experimental system, because the Debye-

Hückel screening model is not necessarily accurate for a dense suspension of polyelectrolytes, such

as the depletant polymers used here. It is difficult to define a screening length based on the ionic

concentration because the polymers do not act as simple free ions. The AO potential is also a flawed

representation of the depletant interaction in our system, as neither the polymer nor the spheres

act as true “hard” spheres; both are charged. It is also unclear in what regimes the polymers act as

spheres at all. It is possible that at large concentrations, the polymers begin to overlap or absorb onto

the particle surface. Moreover, it is not necessarily true that the AO and DLVO interactions should

be purely additive, since they were developed under different regimes and assumptions.

We instead approximate the interactions at low polymer concentration as a hard sphere-depletant

interaction parameterized in terms of the osmotic pressure (Equation 5.7) with a generic repulsive

term that approximates the screened Coulomb repulsion between the spheres. We parameterize the

repulsive term as
Urep(r)
kbT

= e−C[x−2(al+D)]. (5.10)

This formulation adds two constants to the model: C, which scales the strength of the repulsive

term, andD, which shifts the repulsive term along the line connecting the sphere centers. Equiv-

alently, the parameterD scales the prefactor of the exponential. We add the two terms to approxi-

mate the interaction as
U(r)
kbT

=
UAO(r)
kbT

+
Urep(r)
kbT

. (5.11)
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Figure 5.4: Inferred probability density for a Boltzmann distribution parameterized in terms of AO attraction and a
generic repulsion fit to a full distribution of particle distances (trajectory shown in Figure 5.1a). The shape of the best‐fit
distribution (black), given by the median of the sample, matches the data (light blue) and the kernel density estimate
(blue) of the distribution of particle distances well, even with a simplified model for the electrostatics.

To fit this model to the full distribution of gap distances, we use a No-U-Turn sampler (NUTS)

as implemented by the Python package pymc224. This package is designed for fast exploration of

posterior probability densities through automatic differentiation and Hamiltonian dynamics. We

define the priors on each parameter as

as ∼ Truncated Normal(μ = 0.070, σ = 0.05, lower = 0, upper = 0.1)

al ∼ Truncated Normal(0.695, 0.1, lower = xmin/2, upper = 0.8)

ρ ∼ Gamma(μ = 400, σ = 100)

C ∼ Gamma(100, 100)

D ∼ Normal(0, 0.01),

(5.12)

where the mean and spread of the prior on the particle sizes are given by manufacturer’s specifica-

tions or size estimates. We initialize the sampler with the “jitter + adaptive diagonal” tuning method,

which uses information from gradients to tune the step size and the number of steps per sample. To

calculate the normalization factor Z in Equation 5.6, we implement a numerical integrator.

We find that the best-fitU(r) predicts a distribution that matches the distribution of the data
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Figure 5.5: Posterior of AO model with generic repulsive term obtained by fitting a Boltzmann distribution to the distri‐
bution of gap distances. The marginalized best‐fit parameters for each parameter are shown on the diagonal.

well (Fig. 5.4). However, the inferred parameters (shown in Fig. 5.5) present some complications.

First, there are strong covariances between the inferred sizes of the colloidal particles and the de-

pletant polymer, as shown by the skew of the 2Dmarginalized posterior of those parameters. This

covariance makes it difficult to independently infer the sizes of each particle. The sampler finds a

MAP value for the polymer size of as = 28 nm (compared to the expected rg ≈ 60 nm) and aMAP

value for the spheres size of al =0.73 µm (compared to the expected r =0.66 µm).

Despite these limitations, the AOmodel with a generic repulsive term captures the position and

curvature of the peak of distance distribution (Fig. 5.4). This curvature can be described by the
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spring constant of the system, which estimates the stiffness of the bond from the second derivative

about the potential minimum. While the functional form of the model makes it challenging to solve

for the spring constant analytically, numerically solving for the curvature about the minimum gives

a spring constant of k =5450 kbT/µm2.

5.2.3 Morse potential

If we are only interested in the shape and curvature of the particle pair potential, we can use a gen-

eral model that is more easily fit, specifically a Morse potential,

U(r)
kbT

= De

[
e−2a(r−re) − 2e−a(r−re)

]
, (5.13)

whereDe is the well depth, re is the location of the minimum, and a is the range parameter. The

Morse potential is a reasonable approximation to the full AO-DLVO potential, but is far easier to fit

to data.

To fit this model to the data, we use the NUTS sampler as implemented by pymcwith the follow-

ing priors:

re ∼ Truncated Normal(μ = 1.5, σ = 0.3, lower = xl, upper = 1.8)

a ∼ Truncated Normal(30, 10, lower = 10, upper = 60)

D ∼ Gamma(μ = 5.5, σ = 3).

(5.14)

Pair plots of the posterior are shown in Figure 5.6a. Although the well depth and range parameters

differ slightly from the best fit to the inverted histogram (shown in Fig. 5.1b), the curvature of a

Boltzmann distribution with the best-fit Morse parameters matches the curvature of the peak of the

distribution of the data.

We can quantify this curvature by solving for the spring constant in terms of the model param-
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Figure 5.6: Posterior and spring constant from fitting a Boltzmann distribution with a Morse potential to the full distri‐
bution of gap distances. (a) Posterior and marginalized parameters for the Morse potential. (b) Marginalized posterior of
the spring constant k, found by analytically solving for k in terms of the model parameters and plotted using the samples
for these parameters.

eters. For a Morse potential, Taylor expanding the expression, truncating at the second derivative,

and solving about the minimum position re yields

k = 2Dea2. (5.15)

We use the Monte Carlo samples for a andDe and marginalize over the other parameters to arrive

at a posterior for the spring constant that accounts for all the uncertainties of our system, shown in

Figure 5.6b. Approximating the curve as Gaussian, we arrive at an estimation of the spring constant

as k = 5480± 270 kbT/µm2 for spheres 1.3 µm in diameter, freely diffusing in 3D in a polymer

solution at a concentration of 0.075mgmL−1. This result agrees with the results found from pa-

rameterizing the potential in terms of the AOmodel with a repulsive term, but with a much smaller

computational time and a model that has less covariance between the parameters.
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Figure 5.7: Trajectories (left) and histogram distributions (right) of particle gap distances with kernel density estimates
for varying densities of depletant polymers. As the concentration of the depletant approaches the overlap concentra‐
tion, the distribution of gap distances is no longer a single, well‐defined peak. Instead, the distributions broaden and a
secondary peak emerges at high depletant concentrations.

5.3 Increasing depletant concentration

Now that we have developed a set of tools for analyzing the distributions of gap distances obtained

through holographic microscopy, what remains is to apply those tools to understand a range of

systems. First, we compare the system we analyzed in the previous sections, a suspension with

0.075mgmL−1 of 700,000 molecular weight NaCMC, to systems with a higher concentration of

depletant polymers. We increase the polymer concentration until it is just below the expected over-

lap concentration of 0.11mgmL−1.

As the depletant concentration increases, we find that the particles no longer fluctuate about

a single minimum position (Fig. 5.7). Instead, the distribution of the particle distances broadens

and an additional peak appears approximately 120 nm from the primary peak. A secondary peak

has been found in previous studies of the depletant interaction at high concentrations198, where it
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arises from the depletant particles forming layers about the larger particles. Although dense poly-

electrolytes near the overlap concentration may not act as monodisperse spheres, we expect similar

structuring effects to arise in this system.

While the distributions of the particle distances allow us to qualitatively describe the interactions

at high depletant concentrations, it is evident that the distributions are no longer well described by

the models for the particle pair potential detailed above. Therefore, any fits to a Morse potential to

describe the spring constant of the system would not be reliable.

5.4 Measurements of particle interactions on glass surface

The presence of a glass surface can introduce electrostatic interactions which affect the potential.

Thus, for quasi-2D experiments in which particles are confined to a glass surface, it is important

to characterize the interparticle potential on that surface. Although one of the main benefits of

using holographic microscopy to track colloidal spheres is the three-dimensional information we

can extract, it can also be used to track particles moving in two dimensions while accounting for any

out-of-plane fluctuations they may experience.

For these experiments, the particles are 0.71 µm polystyrene spheres with 2 mMNaCl to screen

interactions with the glass surface. We then add NaCMCwith a molecular weight of 250,000

and a radius of gyration of about 40 nm. We suspend samples at a range of concentration from

0.17mgmL−1 to 0.40mgmL−1, well below the overlap concentration.

At the lowest depletant concentrations, the particles quickly fall apart, leading to an over-rep-

resentation of large gap distances beyond the range of particle interactions (Fig. 5.8). We discuss

how to more rigorously account for these effects in the following section, but in order to apply the

straightforward Boltzmann inversion, we first restrict the histograms to small distances where the

primary peak is clearly visible (Fig. 5.9). We see that increasing the depletant concentration increases
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Figure 5.8: Full histograms of particle gap distance at varying depletant concentrations, from 0.17mgmL−1 to
0.20mgmL−1. At the lowest concentrations, the particles quickly become unbound, oversampling large particle dis‐
tances. At higher depletant concentrations, the particles remain bound longer, but still oversample large distances.
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Figure 5.9: Histograms of particle gap distances less than 200 nm at varying depletant concentrations, from
0.17mgmL−1 to 0.40mgmL−1. By focusing on the close particle distances, we resolve a single peak that increases
as we increase the depletant concentration. At high depletant concentrations, the peak also shifts to smaller gap dis‐
tances, potentially owing to electrostatic effects from the charged depletant polymers.

and narrows the peak of the histogram. It also shifts the peaks to smaller gap distances, possibly

because the polymer screens the electrostatic repulsion.

Using the Boltzmann inversion method discussed in Section 5.1, we estimate the interparticle

pair potential as a function of depletant concentration (Fig. 5.10). We fit the inverted histograms to

a Morse potential and find that increasing the concentration of depletant polymers makes the po-

tential well deeper and more narrow. Though the effects are subtle at the lower, more closely spaced

depletant concentrations, the well depth increases significantly between the lowest and highest de-

pletant concentrations, in accordance with our observations of different bond times.

5.4.1 Entropic term in Boltzmann distribution

Finally, we fit the full distribution of gap distances to a Boltzmann distribution with a Morse poten-

tial. First, to account for the increased configurational space available to the unbound particles, we
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Figure 5.10: Boltzmann inversion (dots) and fits to a Morse potential (solid lines) for small particle gap distances at
varying depletant concentrations, from 0.17mgmL−1 to 0.40mgmL−1. Increasing the depletant concentration leads to a
stronger interaction, as well as a narrower well.
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include a term in the Boltzmann distribution that accounts for degeneracy, so that the distribution

is now

p(r)dr =
Ω(r)dr exp [−βU(r)]

Z
, (5.16)

where Ω(r)dr is the degeneracy of state r. For experiments confined in 1D, this degeneracy is one:

there is only one configuration for every gap distance. In 2D, any given gap distance r could be ob-

served on the circumference of a circle with radius r. In 3D, this configurational degeneracy goes as

r2, as the particles can be positioned anywhere on the surface area of a sphere with radius r and still

have the same gap distance. Therefore

p(r)dr =
4πr2dr exp [−βU(r)]

Z
, (5.17)

where

Z =

∫ b

a
4πr2 exp [−βU(r)] dr, (5.18)

and a and b are the boundaries of the support of p(r). Simplifying, we find

p(r)dr =
r2 exp [−βU(r)]∫ b

a 4r2 exp [−βU(r)] dr
. (5.19)

Again, if the recorded data {r} are IID, the likelihood function factorizes as

p({r} | θ) =
N∏
i=1

r2i
Z
exp [−βU(ri | θ)] , (5.20)

where θ is the vector of parameters for the potential andN is the number of data points. We can

then write the log likelihood function as

ln p({r} | θ) = −N lnZ+
N∑
i=1

[2 ln ri − βU(ri)] . (5.21)
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We evaluate the partition function as before with an integrator evaluated over the boundaries of the

support for p(r). With this formulation, we can optimize the log posterior function while account-

ing for the increased configurational space available to the particles.

5.4.2 Spring constants

We fit this model using the same NUTS sampler as before, with modified priors to account for the

differences in the experimental system. The priors are given by

re ∼ Truncated Normal(μ = 0.75, σ = 0.05, lower = xl, upper = 0.9)

a ∼ Truncated Normal(30, 10, lower = 10, upper = 60)

D ∼ Gamma(μ = 4, σ = 4).

(5.22)

To limit computational time, we limit the integrator to center-to-center distances between 0.65 µm

and 4.0 µm, far beyond the expected range of interaction.

We marginalize the sampled posterior to arrive at a posterior probability density for the spring

constants of each system (Fig. 5.11). While most of the marginalized posteriors are approximately

Gaussian, the distributions of 0.17mgmL−1 and 0.20mgmL−1 have a noticeable skew, which arises

because the distribution of the potential parameters is cut off by the limits on the priors.

We estimate the MAP value of the distribution and the uncertainty as the 1σ width of the distri-

bution:
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Figure 5.11: Marginalized posterior probability density of spring constants for various depletant concentrations. Increas‐
ing the depletant concentration increases the bond stiffness of the system by orders of magnitude. The skew in some of
the distributions (0.17mgmL−1 and 0.20mgmL−1) arises from skews in the inferred Morse parameters.
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Concentration (mgmL−1) Spring constant (kbT/µm2)

0.17 973± 24

0.18 1058± 4

0.19 1034± 4

0.20 1164± 25

0.30 6980± 160

0.40 28760± 440

As the depletant concentration increases, the bond stiffness increases significantly, though non-

monotonically. Because the polymers are charged, increasing their concentration changes both the

attractive depletant forces and the repulsive electrostatic terms; these electrostatic effects may be

responsible for the complex response we see in the bond stiffness.

5.5 Conclusion

With the high-precision measurements of particle gap distances made with holographic microscopy,

we can understand the underlying pair potential of two colloidal spheres. Through the different

analyses outlined above, we can quantify the bond stiffness of the system, estimate the interaction

range, and obtain quantitative information about the shape of the entire pair potential that arises

from the balance of depletant-driven attraction, electrostatic repulsion, and van der Waals forces.

We have shown that this method can directly quantify interactions at the nanometer scale in

both two and three dimensions, making it a powerful tool for characterizing interactions in situ. In

principle, accurate measurements of particle interactions can be used to predict the phase behavior

or assembled structure of colloidal particles. In the conclusion chapter, I discuss preliminary work

to relate these inferred interactions to crystallization experiments in the same system.

The method could be extended to other systems. The simplest extension would be increasing the
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number of particles from two to three, a regime still easily accessible with holographic microscopy

and generative modeling. By measuring the pair and three-body potentials directly, we could test

whether the interactions are additive217. Other possible extensions include measurements of the de-

pletant interaction for non-spherical particles225, as well as measurements of more complex interact-

ing particles, such as living cells, especially those that are too delicate to be confined or manipulated

with optical tweezers.

There are some limits to the interactions one can probe with these methods. For one, a generative

modeling approach to holographic microscopy is best suited to the dilute limit, where there are a

limited number of parameters to infer. It would be challenging, if not computationally impossible,

to quantify bulk interactions between particles and to examine how they differ from sums of the pair

potential. In the following chapter, I briefly discuss a collaborative effort to analyze the trajectories

of many interacting particles in order to infer their underlying potential. Another limitation is the

problem of sampling. The analysis we outlined above is best suited to particles that have a potential

well and therefore remain close to one another throughout the experiment. Purely repulsive spheres

or active particles would be more challenging to probe. Holographic microscopy can be used to

track particles over a wide range of 3D spaces. In principle, any interaction that depends on relative

particle positions could be measured with holographic microscopy.
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We know you can never do it properly - once and for all.

Passion is never enough; neither is skill. But try.

Toni Morrison,Nobel Lecture In Literature, 1993

6
Conclusion

The contents of Section 6.2 are being prepared in the following manuscript:

“Inferring interaction potentials from stochastic particle trajectories.” Ella M. King, Megan

C. Engel, Caroline Martin, AlpM. Sunol, Qian-Ze Zhu, Sam S. Schoenholz, Vinothan N.

Manoharan, andMichael P. Brenner.

The material in this chapter is based upon work supported by the National Science Foundation

Graduate Research Fellowship under Grant No. DGE1745303, the HarvardMaterials Research
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Science and Engineering Center (DMR 20-11754), the Office of Naval Research (ONRN00014-

17-1-3029), and the Department of Defense through the National Defense Science and Engineering

Graduate Fellowship. The authors thanks Ryan Krueger and Chrisy Xiyu Du for helpful discus-

sions.

In this thesis, I have detailed how we can use a generative modeling approach to holographic

microscopy to extract quantitative information about colloidal dynamics. I have shown that the

generative model we chose can strongly affect the accuracy of our inferred parameters, and I have

developed models that improve the accuracy of particle tracking and characterization by account-

ing for optical effects. I have used these improved models to characterize very small gap distances

between two particles. Finally, I have analyzed distributions of those gap distances to understand

particle interactions in the presence of a charged polymer depletant.

Here, I discuss ongoing work that expands upon the work detailed in Chapter 5, including using

characterizations of particle pair potentials to compare experiment to simulation and developing

alternative approaches to inferring pair potentials of many interacting particles.

6.1 Informing and comparing to simulation

One of the appeals of accurately characterizing particle interactions is predictive power: if we under-

stand how individual particles interact, we can predict their bulk behavior, such as crystallization,

phase behavior, or structure formation. To investigate whether we can achieve this predictive power,

I am collaborating with Dr. Jessica Sun and Dr. Alp Sunol to connect the particle pair potentials I

infer to particle crystallization in both experiment and simulation.

To do so, we simulate many particles interacting in 2D via a Morse potential with the best-fit pa-

rameters found by the Boltzmann inversion method discussed in the prior chapter. We simulate par-
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Figure 6.1: Measured particle interactions from Boltzmann inversion and best‐fit Morse potential at varying depletant
concentration. Subset of the fits shown in Figure 5.10.

Figure 6.2: Confocal images of fluorescently labeled 0.7µm spheres with increasing concentrations of NaCMC depletant
polymers. Increasing depletant concentration triggers particle crystallization. Data taken by Jessica Sun.

ticles with a differentiable molecular dynamics code package called JAX-MD226. The pair potentials

used for the simulations are shown in Figure 6.1. We compare the simulation results to experiments

of particles assembling into crystals on glass surfaces, as observed by Jessica Sun. Confocal images of

the particles show a strong dependence of the phase behavior on depletant concentration (Fig. 6.2).

We plan to compare the forward-simulations to the experimental behavior by characterizing the

particle correlation function g(r) for both the simulations and experiments. Although we do not

find that the inferred particle potentials get monotonically deeper, we do find that as we increase the

depletant concentration, the bond stiffness of the system increases overall. It will be interesting to

observe the degree of sensitivity of the structure to the Morse potential, and to connect our direct

measurements of particle interactions with observable phase behavior.
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6.2 Other methods of inferring particle pair potentials

Up until now, the methods I have outlined for inferring pair potentials rely on observing only a few

particles at a time, a condition that could be very different from in situ environments of the sys-

tems of interest. Moreover, any method that assumes that the particle positions are Boltzmann dis-

tributed inherently assumes that the system is in equilibrium. There are several situations for which

these assumptions would not hold, including active matter, many-body interactions, or velocity-

dependent interactions.

An alternative approach to inferring particle interactions is to infer force fields directly using ex-

perimental trajectories of interacting particles. In collaboration Dr. Ella King, Prof. Megan Engel,

Dr. Alp Sunol, Qian-Ze Zhu, Sam Schoenholz, and Prof. Michael Brenner, I have worked to de-

velop a maximum-likelihood-based method for inferring particle interactions by explicitly solving

the equations of motions to find a form of the potential that maximizes the probability of observ-

ing a known trajectory. The method we developed is valid for systems both in and out of equilib-

rium, is well-suited to large numbers of particles interacting in typical system conditions, and does

not assume a functional form of the interaction potential. The approach can be applied equally to

non-equilibrium data, opening up a new frontier of experimental settings – including active mat-

ter systems, defects in active nematics, cell-cell interactions, and tribocharged particles – for which

interparticle interactions can be inferred.

The experimental trajectories we record are of colloidal particles experiencing depletion interac-

tions and electrostatic repulsion. We suspend 1.3 µm charge-stabilized colloidal spheres and induce a

depletant interaction with carboxymethyl cellulose salt polymers with a radius of gyration of 60 nm.

We allow these spheres to deplete to the bottom surface of the chamber, confining the system to a

quasi-2D geometry. The charge-stabilized particles are like-charged and repulsive, and the addition

of the depletant polymers into the system induces an entropically-driven attractive force that mini-
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Figure 6.3: Diagram of experimental system. Charge‐stabilized polystyrene spheres are suspended with depletant
polymers with a radius of gyration of approximately 0.06 μm. The depletants induce an entropically‐driven attraction
between the larger spheres, with a range set by the size of the polymers. The spheres are depleted to a glass slide and
freely diffuse in the quasi‐2D sample chamber.
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mizes the volume excluded to the depletant particles (Fig. 6.3), leading to an overall attractive inter-

action. The range of the depletion interaction is set by the diameter of the depletant particles (0.12

µm), while the point of infinite energy is set by the center-to-center distance of the two spheres (1.3

µm)We record bright-field images of these diffusing and interacting particles, and recover particle

trajectories using trackpy227.

To maximize the log likelihood function, we can either infer the best fit parameters for a particu-

lar functional form of the potential or we can fit the potential to a general functional form. Graph

Neural Networks (GNNs) are an especially appealing choice, as they implicitly include physical pri-

ors of locality and distance dependence of interparticle potentials. Using a GNN, we reconstruct

an experimental interaction potential from particle trajectories (Fig. 6.4a). We compare this poten-

tial to an inverted histogram of all interparticle separations, which gives the potential of mean force

(PMF) according to

U(x) = −kbT log p(x) (6.1)

where p(x) is the probability of an interparticle distance falling into bin x; the results are shown as

black dots in Figure 6.4a. At low particle densities, the PMF can serve as a rough estimate of the pair

potential, assuming that the system is at equilibrium and only exhibits pairwise interactions.

We find good agreement between the potential inferred by the GNN and the experimental po-

tential near the well. Both methods return a measure of the colloidal radius and depletion interac-

tion range that agree with previous characterizations. Additionally, the depth and curvature of the

GNN potential matches the experimental results near the potential minimum.

We can further compare the results using the pair correlation function g(r). We run forward

simulations with Jax-MDwith particles with the inferred potential and compare the resulting particle

structure to the experimental data (Fig. 6.4b). The inferred potential reproduces several features

of the experimental g(r), including the height and location of the primary peak as well as a small
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Figure 6.4: Plots of experimental data compared to inferred particle potential. (a) Inferred interaction potential is shown
with a solid green line with shaded error bars set by variations over many trials. Experimental data is shown with black
scatter points, given by inverting a histogram of particle positions. The two lines have reasonable agreement near the
potential well. The vertical dashed line indicates the expected particle diameter. (b) The pair correlation function for the
experimental data compared to the pair correlation function of forward‐simulated particles with the inferred potential.

secondary peak, in addition to matching the long-ranged behavior.

There remain a few open questions to address, the biggest of which is how to account for en-

tropic effects at a finite density. It is unknown whether this method could resolve two very different

underlying potentials that give the same structure – say, a crystal that seems to be made up of at-

tractive particles but in fact is made up of hard sphere particles driven to crystallize by entropy. It

is possible that this could be resolved by sampling more particle trajectories, but it is also possible

that some prior knowledge of the potential would be needed to differentiate them. One potential

method to more rigorously account for entropic effects at a finite density is to vary the density and

extrapolate to the dilute regime, a method outlined by Iacovella and coworkers219.

6.3 Outlook

Across length scales, life depends on the arrangement of subunits into larger, more complex struc-

tures: proteins fold into secondary structures, phospholipids assemble into bilayers, cells coordi-

nate to form tissues. These microscopic structures of life emerge, in part, due to particle inter-
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actions driving the emergence of a particular structure. Although the microscale dynamics and

forces in these systems are rich for study, they are also hard to probe. Advances in microscopy have

pushed resolution of single-molecule dynamics with methods such as interferometric scattering mi-

croscopy178,179 or in vitro images with methods such as two-photon microscopy228. But I argue

that the future of microscopy lies not necessarily in the resolution of images, but in the resolution

of information. To unravel the dynamics, forces, and interactions in these complex microscopic

systems, we need quantitative, 3D information about how the components are moving.

However, it is often true that improvements in quantification must wait on improvements in

computation. This is certainly true of holographic microscopy. Though generative models for light

scattering had long been developed, fitting those models to holographic data had to wait for the ad-

vent of computers powerful enough to compute those scattering solutions173,174. All the methods

I used throughout my thesis were enabled by fairly recent developments in statistical inference and

machine learning. In fact, the work I described in Chapters 4 and 5 to infer particle interactions is

something that my group had been working on for over a decade. The additional progress I made is

in part thanks to the larger progress of inference methods as a whole.

I anticipate that future progress in understanding colloidal physics using holographic microscopy

will be enabled with even more powerful computational tools, such as advances in machine learning

models or scattering solutions built with auto-differentiatable code. Advances in colloidal sciences

have long depended on technological advances, from Brown’s microscope to the advent of digi-

tal video microscopy to improvements in particle tracking algorithms. I anticipate that in another

decade, the computational tools I have spent my PhD developing will seem laughably slow. But

though I know the methods outlined here will soon sink down into disuse, I hope they will become

a foundation upon which more work will be built, reaching, perhaps, to something true.
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