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We explore experimentally how a conical surface frustrates the growth of colloidal crystals. Whereas
crystals on a cylinder can form perfect commensurate bands, crystals on a cone tend to form tilt grain
boundaries with misorientation angles set by the conical geometry. However, at small cone angles, where
the surface deviates only slightly from that of a cylinder, crystals can form commensurate bands, the widths
limited by the emergence of dislocations. The dislocations allow the crystal to continue growing beyond the
limiting width. We relate these effects to the gradient in circumference on a cone, a consequence of the

Gaussian curvature localized at the apex.
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Studying the formation of crystals on curved surfaces
illuminates how geometric constraints can lead to frus-
tration and novel structures [1-4]. For example, crystals
must stretch to conform to spherical or hyperbolic surfaces,
owing to the nonzero Gaussian curvature. The resulting
crystal morphologies and defect patterns are not found on
flat surfaces, as shown in a host of studies on colloidal
systems over the past two decades [5—13].

Less well studied are cones. Conical surfaces pose two
interesting challenges for crystal growth. First, a cone has a
point-source of positive Gaussian curvature at its apex, with
zero Gaussian curvature on its sides. The integrated
Gaussian curvature on any surface that includes the apex
is equal to the deficit angle 2z — ¢, where ¢ = 2z sin(f3/2)
is the angle of an unwrapped cone (sector) and £ is the full
cone angle [Fig. 1(a)]. This geometrical frustration is
present even if the cone is decapitated by snipping material
from the apex [14]. Second, a crystal growing on the cone
must eventually meet itself, or “close,”” when it wraps
around. It is instructive to compare this situation to the
simpler problem of crystallization on a cylinder. Theory
and simulations [15-18], as well as experiments on a
colloidal system [19], have shown that for a given circum-
ference, crystals with specific orientations can close without
defects on a cylinder. At other orientations, the crystals form
linear boundaries known as “line slips” or “seams.” Unlike a
cylinder, a cone has a gradient in circumference as one
moves away from the apex. Square or triangular crystals on a
cone can therefore close without defects only at so-called
“magic” cone angles and, even then, only for a specific
crystal orientation. Recent theoretical and computational
studies of crystals [20-22] and liquid crystals [14,23,24] on
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non-magic-angle cones have revealed a variety of interesting
defect structures triggered by geometrical frustration.

Here we experimentally explore how colloidal particles
with short-ranged attractions crystallize on a conical fiber.
We aim to understand how the conical geometry affects not
only the defect structure but also the growth process itself. A
previous study examined atomic-scale crystals of tungsten
disulfide grown on high-angle (5%20°) silicon cones [25].
When crystals wrapped around these cones and closed, they
formed tilt grain boundaries with misorientation angles
equal to the sector angle ¢. In this atomic-scale system,
direct observation of the crystal lattice was difficult, and
results depended on comparison between experiment and
simulation. In our system, we can directly observe the crystal
orientations, defects, and growth process at the single-
particle level. Furthermore, we focus on cones with small
cone angles (f 5 10°), and we look at crystals that form far
from the apex. We can therefore examine how changing the
cone angle affects the crystal growth as the surface deviates
from a well-understood reference state, the cylinder (f = 0°).
A previous computational study from our group [22]
suggested that the growth of perfect crystals can be arrested
by the elastic strain resulting from the gradient in circum-
ference, even at small S.

We prepare a colloidal system with depletion attractions
[Fig. 1(b)] and use confocal microscopy to image the
crystallization of particles on conical glass fibers [Fig. 1(c)].
The particles are polystyrene spheres with diameter
d =710 nmat0.1% volume fraction in an aqueous solution
of 0.5 mM NaCl and 0.2 mg/ml sodium carboxymethyl
cellulose, a polymer. The polymer, which has an approxi-
mate size 6 = 90 nm [26], induces a depletion attraction

© 2025 American Physical Society
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FIG. 1. (a) Left, diagram of a cone with small cone angle f.
Right, diagram of the sector resulting from cutting and unwrap-
ping the cone. The sector angle is ¢. The deficit angle 2z — ¢ is
equal to the integral of the Gaussian curvature enclosed by a loop
around the cone apex. (b) Schematic of carboxymethyl cellulose
polymers inducing depletion forces between colloidal polysty-
rene particles and between the particles and a glass surface.
(c) Composite confocal micrograph of colloidal particles (red
fluorescence channel) in the early stages of crystallizing on a
cylindrical (top) and conical (bottom) glass fiber. The fibers are
visible in the gray brightfield channel. The fluorescence intensity
varies with the distance of the particle from the focal plane. Scale
bar is 5 pm.

between the larger polystyrene spheres [27]. We choose
the polymer and salt concentrations so that quasi-two-
dimensional (quasi-2D) crystals form on glass substrates.
To make the fibers, we stretch and taper glass capillaries
with a pipette puller, varying the pulling parameters [28] to
vary f§ between 0 and 10°.

Crystals start to form soon after the first particles adsorb
onto the cone [Fig. 1(c)]. Adsorption then continues con-
currently with crystal growth until, after a few hours, the
crystal growth slows, likely because adsorption of particles
to other surfaces in the sample chamber decreases the bulk
concentration. At long times, we observe coexistence
between fluid and crystalline phases on the cone [28].

At intermediate times, we can observe the closure
dynamics, which appear similar for both cylinders and
cones. One observed closure process involves the formation
of chains that bridge the two edges of the crystal grain
[Figs. 2(a) and 2(b)]. Many chains form and break before
the crystal closes. We explain this observation as follows: If
the grain bridged by the chain is oriented such that it could
form a commensurate crystal, additional particles can easily
attach to the sides of the chain and reinforce it, which closes
the crystal. Otherwise, the chain remains one particle wide
and is therefore susceptible to breakage. Because the grain
can rotate on the surface, chains can form along different
directions until the crystal closes.

However, the defect structures of crystals on cones and
cylinders differ. On the cylinder, commensurate crystals
can form at many orientations [18], which may explain why
most crystals we observe on the cylinder are defect-free
bands (Fig. S1 [28]). On the cone, crystals tend to form

FIG. 2. Closure of crystals. (a) Time series of confocal images
showing closure of a crystal on a near-cylindrical fiber (8 = 0.5°).
Chains of particles (circled in blue) break and reform until the
crystal closes. In each closure attempt, particles and clusters
rearrange and grains rotate slightly. Time between subsequent
frames is 0.5 s. The crystal eventually closes to form a defect-free
band, as shown by the images at right of the front and back halves
of the crystal. (b) As in panel (a), but for a conical fiber
(# = 10.3°). Chains also form on the cone, but the gradient in
circumference leads to a seam (white arrow, blue shading).
(c) Confocal projections of the front and back of a cone with
a smaller cone angle (f = 3.05°) also show a seam (white arrows,
blue shading; Fig. 3 shows a digital unwrapping of this cone). All
scale bars are 5 pm.

visible grain boundaries when the cone angle is several
degrees or more. We call these grain boundaries “seams”
because they form between the edges of the same crystal
Figs. 2(b) and 2(c)]. Seams arise because the gradient in
circumference along the cone axis makes it impossible for
the crystal to close without defects.

These results illustrate a key difference between closure on
acylinder and on a cone: when a growing grain wraps around
acone, it meets itself at a new angle. To illustrate the parallel
transport associated with this phenomenon, we digitally
unwrap the three-dimensional (3D) confocal images into
2D flat space to identify the grain boundary [28], as shown
in Fig. S2 [28]. We then locate particles to reveal the local
grain orientation with respect to a common x axis for
three replicated versions of our two half-cones [Figs. 3(a)
and 3(b)]. By locating particles in the flattened, 2D images
instead of the 3D dataset, we can reveal the crystal orientation
even when the positions of particles on the sides of the cone
cannot be precisely determined.

The orientation map [28] of a crystal on a cone with
p = 3.05° reveals a single continuous grain that wraps
around the surface of the cone [Fig. 3(b)]. Therefore, the
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Crystals on a cone are misoriented at the seam. (a) Confocal images showing two half-cones repeated three times (for

visualization purposes) of the unwrapped cone from Fig. 2(b). Bright region shows the first two half-cones. Scale baris 5 pm. (b) Color-
coding particles by their local orientation relative to a global x-axis reveals that most particles are part of a single crystalline grain (white
outline), as evidenced by regions of the same orientational color running across the periodic images. The outlined grain is misoriented
with itself at the seam (see Fig. S3 [28] for another example). (c) Histograms and kernel density estimates (solid lines) of the local
orientations of particles in the purple and pink regions in (b). The average orientations are 0, = 15.3° + 0.3° (purple region) and
6, = 25.3° 4+ 0.2° (pink), where the uncertainties are standard errors on the means. (d) Plot of misorientation angle 8, — @, for several
crystals as a function of sector angle. A linear fit to the data (black line) agrees with the expected relationship 6, — 8, = ¢ (blue line).

For the crystal in (b), 8, — 6, = 10.0° £ 0.4° and ¢ = 9.6°.

seam that forms between the leftmost and center domains in
the upper z-projection image of Fig. 2(c) is actually a tilt
boundary formed between edges of the same grain. This
boundary spirals toward the apex.

It follows by geometry that the misorientation across the
seam should be equivalent to the sector angle ¢ of the
unwrapped cone [24,25]. We calculate the misorientation
from the average orientations of particles in domains
adjacent to the tilt boundary and on the same side of the
cone surface [Fig. 3(c)]. The measured misorientations
correspond well with the sector angles [Fig. 3(d)].

Although the equivalence of the misorientation and sector
angle has been found in previous experiments [25]—though
indirectly as opposed to the direct measurement here—it is
worth commenting on the remarkable feature it illustrates:
on the cone, a global property of the surface (the cone angle)
can be inferred from a local measurement (the misorienta-
tion across the grain boundary). Because the cone angle is
related to the integrated Gaussian curvature around the apex,
this result shows that the point source of Gaussian curvature
at the apex has a long-range effect; that is, a crystal growing
far from the apex, where there is no Gaussian curvature, is
still subject to the strength of the point source, which forces
the misorientation at closure. More generally, if the surface
is not strictly a cone, the local measurement of the mis-
orientation reveals the gradient in circumference.

To understand how this geometrical constraint might
affect the growth of crystals, we examine smaller 3, which
allows us to probe the transition from a cylindrical to a
conical geometry. At low S, we find that most crystals do

not have seams like those shown in Figs. 2(b) and 2(c) over
the axial length of our cones. Instead, they form crystalline
bands over some length scale w,, as shown in Fig. 4(a). We
determine w, as the largest distance between defects or
voids on a crystal that has grown for at least 70 min and
up to 2 h [28]. We then plot the measured w,. as a function
of p [Fig. 4(b)]. For a given small range of f, there is a
distribution of w,, likely because the measured crystal
width can be obscured by vacancies [28].

However, if we focus only on the largest values of w,. for
each g, we find that the maximum crystal size decreases
with f. For near-cylindrical surfaces, the maximum w, is
nearly as large as the entire axial length of the crystal. At
high g, w, = 0 because seams form that run down the cone.
Figures S5(a),S5(b) [28] show crystals corresponding to the
largest value of w,. for selected f.

These results show that the conical geometry limits the
domain size. We originally expected, based on previous
results for colloidal crystals grown on spheres [11], that the
crystal size would be limited by the buildup of elastic stress.
On a sphere, stress arises from the Gaussian curvature; on a
cone, it arises from the gradient in circumference, deter-
mined in turn by a J function of Gaussian curvature
concentrated at the apex. A model based on a continuum
approximation (see Appendix of Ref. [22] for the model
and Fig. S4 [28] for a growth scenario in which this model
would apply) predicts that the maximum width of a crystal
grown on a cone should scale as 1/f. Indeed, we find that
the maximum w, values can be fit to w, ~ 1/f [28], as
shown in Fig. 4(b). However, if we estimate the Young’s
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FIG. 4. The crystalline domain size is limited by the conical geometry. (a) Unwrapped images [28] of a crystal grown on a low-angle
cone with f = 0.53° (p = 1.67°), showing that crystals form a defect-free band (dark gray region) of width w, = 8.31 pm. Red borders
indicate the boundaries of the crystal [28]. (b) Plot of measured w,. for 126 crystals grown on cones with § = 0°t0 9.9° (p = 0°to 31.2°)
and diameters 3 to 9 pm. We measure w, after allowing grains to grow and anneal for at least 70 min. Black curve shows a fit of
w, ~ 1/f to the maximum w,. (highlighted points) at each f. (¢) Plot showing the 1// fit (black curve) and the theoretical dislocation
spacing (red curve). The blue region indicates the range of maximum values of w, if elastic strain were to limit the width.
(d) Representative unwrapped image of a crystal on a cone with # = 4.86° (¢ = 15.28°) showing a dislocation. A Delaunay triangulation
is overlaid on the lowest two half-cones with sixfold-coordinated particle centers in blue, fivefold in red, and sevenfold in yellow. There
are unfilled cells at the half-cone boundaries because lensing distortions make it difficult to locate particles on the sides of the cones.

Scale bar 5 pm.

modulus of the crystal from measurements of the pair
interaction [28], we find that the continuum model predicts
limiting values of w, that do not match the data [Fig. 4(c)].
Furthermore, the Young’s modulus that we estimate by
assuming that the continuum model is correct does not
agree with the measured modulus [28].

Instead, we find that the width of a crystal on a low-
angle cone is limited by the formation of dislocations. As
shown in Fig. 4(c), the fit to the experimental data closely
matches [28] the expected dislocation spacing for a tilt
boundary as a function of cone angle [32],

~tang tan [2zsin(4/2)]’

(1)

where b is the magnitude of the dislocation Burgers vector
(here, equal to the lattice constant of the crystal). For small
angles, D ~ 1/f. This equation has a simple geometrical
interpretation: D is the distance over which the circum-
ference increases by a particle diameter (Fig. S6 [28]).
We show a representative image of a crystal limited by
dislocations in Fig. 4(d).

The formation of a dislocation releases strain such that
the crystal can continue to grow axially. In systems with
very short-ranged attractions, dislocations do not form

because they have a prohibitively high core energy. Our
system has a relatively long-ranged depletion interaction
compared to previous systems [11,19], which should result
in a lower dislocation core energy. The resulting disloca-
tions screen the far-field stresses, thereby preempting the
arrest mechanism predicted by the continuum elastic
model. Similar types of dislocation-mediated strain reduc-
tion have been studied in twisted filament bundles [33,34]
and crystalline caps [35].

Taken together, our results suggest how crystals on cones
grow and close despite the geometrical frustration. Crystals
initially nucleate and grow until they become large enough
that their edges nearly touch. At this point, processes such
as chain formation can lead to closure. On a low-angle
cone, closure (likely followed by local rearrangement of
particles) leads to an initially commensurate and defect-free
crystalline band. As this band grows axially, it accumulates
elastic strain until a dislocation forms. The crystal can then
continue to grow. At larger cone angles (more than a few
degrees), the larger misorientation between the edges of the
crystal makes it more difficult for the crystal to close into a
defect-free band. Instead, it forms a seam, or equivalently a
tilt grain boundary with an angle equal to the sector angle.
We note that a linear array of dislocations, with Burgers
vectors perpendicular to the line, is equivalent to a grain
boundary [32], which connects the two points of view.
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Our findings show that a cone can geometrically frustrate
crystal growth even at very low cone angles, where the
dislocation spacing is large but still finite. The tapered
geometry of low-angle cones is common to optical sensors
[36] and electrochemical probes [37] that are immersed in
biological environments, where depletion interactions can
manifest. The frustration we have observed may have
consequences for self-assembly in such systems. More
generally, we expect that small deviations of the cone angle
from any commensurate reference state—whether a cylin-
der or a magic-angle cone—will likely result in the
formation of dislocations, even when a more obvious seam
does not form. This concept may underlie the structural
selectivity of systems that self-assemble (in the absence
of a solid template) into defectless conical or cylindrical
structures, such as mature HIV-1 capsids [38] or graphitic
nanocones [39].

Finally, one might use the conical geometry to impose an
orientation field on a colloidal crystal, so as to study the
effects of misorientation on grain coarsening. Previous
studies done on patterned flat surfaces [40,41] showed that
crystals coarsen to remove the misorientation through grain
rotation or grain splitting. On a cone, the misorientation of a
crystal is prescribed, which could affect the resulting
coarsening dynamics.
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